Math Prize for Girls Olympiad
 December 9, 2010

1. Let S be a set of 100 integers. Suppose that for all positive integers x and y (possibly equal) such that $x+y$ is in S, either x or y (or both) is in S. Prove that the sum of the numbers in S is at most 10,000 .
2. Prove that for every positive integer n, there exist integers a and b such that $4 a^{2}+9 b^{2}-1$ is divisible by n.
3. Let p and q be integers such that q is nonzero. Prove that

$$
\left|\frac{p}{q}-\sqrt{7}\right| \geq \frac{24-9 \sqrt{7}}{q^{2}}
$$

4. Let S be a set of n points in the coordinate plane. Say that a pair of points is aligned if the two points have the same x-coordinate or y coordinate. Prove that S can be partitioned into disjoint subsets such that (a) each of these subsets is a collinear set of points, and (b) at most $n^{3 / 2}$ unordered pairs of distinct points in S are aligned but not in the same subset.
