2010 Olympiad Solutions

Problem 1 Let S be a set of 100 integers. Suppose that for all positive integers x and y (possibly equal) such that $x+y$ is in S, either x or y (or both) is in S. Prove that the sum of the numbers in S is at most 10,000.

Solution: Let the 100 integers of S be called $a_{1}, a_{2}, \ldots, a_{100}$, where

$$
a_{1}<a_{2}<\cdots<a_{100} .
$$

Consider a particular index k (where $1 \leq k \leq 100$). We claim that $a_{k} \leq 2 k-1$. Assume not; that is, assume $a_{k} \geq 2 k$. Consider the following k sums:

$$
\begin{aligned}
1+\left(a_{k}-1\right) & =a_{k} \\
2+\left(a_{k}-2\right) & =a_{k} \\
\vdots & \\
k+\left(a_{k}-k\right) & =a_{k} .
\end{aligned}
$$

Because $a_{k} \geq 2 k$, each term on the left appears only once (except that the two terms k and $a_{k}-k$ on the bottom left side might be equal). From the given condition, either 1 or $a_{k}-1$ is in S; either 2 or $a_{k}-2$ is in S; and on until either k or $a_{k}-k$ is in S. Hence, at least k numbers in S are less than a_{k}. But only $k-1$ numbers in S are less than a_{k} (namely, a_{1}, a_{2}, \ldots, $\left.a_{k-1}\right)$. Thus we have reached a contradiction. Therefore, we have proved that $a_{k} \leq 2 k-1$.

From the bound $a_{k} \leq 2 k-1$, we get the inequality

$$
\sum_{k=1}^{100} a_{k} \leq \sum_{k=1}^{100}(2 k-1)
$$

The right side is the sum of the first 100 odd numbers. It is well-known that the sum of the first 100 odd numbers is 100^{2}, which is 10,000 . Hence, we are done.

Problem 2 Prove that for every positive integer n, there exist integers a and b such that $4 a^{2}+9 b^{2}-1$ is divisible by n.

Solution: First, we handle the case when n is odd. In that case, let b be 0 and let a be any integer satisfying $2 a \equiv 1 \bmod n$. Then we have

$$
4 a^{2}+9 b^{2}-1=4 a^{2}-1=(2 a-1)(2 a+1)
$$

which is divisible by n.
Second, we handle the case when n is not divisible by 3. In that case, let a be 0 and let b be any integer satisfying $3 b \equiv 1 \bmod n$. Then we have

$$
4 a^{2}+9 b^{2}-1=9 b^{2}-1=(3 b-1)(3 b+1)
$$

which is divisible by n.
Finally, we handle the general case. We can express n as $n_{1} n_{2}$, where n_{1} is not divisible by $2, n_{2}$ is not divisible by 3 , and n_{1} and n_{2} are relatively prime. (For example, let n_{2} be the power of 2 in the prime factorization of n, and let n_{1} be the rest of the prime factorization of n.) From the first paragraph, there are integers a_{1} and b_{1} such that $4 a_{1}^{2}+9 b_{1}^{2}-1$ is divisible by n_{1}. From the second paragraph, there are integers a_{2} and b_{2} such that $4 a_{2}^{2}+9 b_{2}^{2}-1$ is divisible by n_{2}.

By the Chinese Remainder Theorem, there is an integer a that is $a_{1} \bmod$ n_{1} and $a_{2} \bmod n_{2}$. Similarly, there is an integer b that is $b_{1} \bmod n_{1}$ and $b_{2} \bmod n_{2}$. Modulo n_{1}, we have

$$
4 a^{2}+9 b^{2}-1 \equiv 4 a_{1}^{2}+9 b_{1}^{2}-1 \equiv 0 \quad\left(\bmod n_{1}\right)
$$

Modulo n_{2}, we have

$$
4 a^{2}+9 b^{2}-1 \equiv 4 a_{2}^{2}+9 b_{2}^{2}-1 \equiv 0 \quad\left(\bmod n_{2}\right)
$$

Thus $4 a^{2}+9 b^{2}-1$ is divisible by both n_{1} and n_{2}. Because n_{1} and n_{2} are relatively prime, that means $4 a^{2}+9 b^{2}-1$ is divisible by their product $n_{1} n_{2}$, which is n. That's what we wanted to show.

Problem 3 Let p and q be integers such that q is nonzero. Prove that

$$
\left|\frac{p}{q}-\sqrt{7}\right| \geq \frac{24-9 \sqrt{7}}{q^{2}}
$$

Solution: First, we handle the case when $|p| \leq \frac{8}{3}|q|$. Because $\sqrt{7}$ is irrational, we have

$$
|p-q \sqrt{7}| \cdot|p+q \sqrt{7}|=\left|p^{2}-7 q^{2}\right| \geq 1
$$

Hence we have

$$
\begin{aligned}
|p-q \sqrt{7}| & \geq \frac{1}{|p+q \sqrt{7}|} \\
& \geq \frac{1}{|p|+|q| \sqrt{7}} \\
& \geq \frac{1}{\frac{8}{3}|q|+|q| \sqrt{7}} \\
& =\frac{3}{(8+3 \sqrt{7})|q|} \\
& =\frac{3(8-3 \sqrt{7})}{|q|} \\
& =\frac{24-9 \sqrt{7}}{|q|} .
\end{aligned}
$$

Dividing both sides by $|q|$ gives the desired inequality.
Second, we handle the case when $|p| \geq \frac{8}{3}|q|$. If $|q| \geq 3$, then we have

$$
\begin{aligned}
\left|\frac{p}{q}-\sqrt{7}\right| & \geq\left|\frac{p}{q}\right|-\sqrt{7} \\
& \geq \frac{8}{3}-\sqrt{7} \\
& =\frac{8-3 \sqrt{7}}{3} \\
& =\frac{24-9 \sqrt{7}}{9} \\
& \geq \frac{24-9 \sqrt{7}}{q^{2}}
\end{aligned}
$$

If $|q| \leq 2$, then $|p| \geq \frac{8}{3}|q|$ implies $|p| \geq 3|q|$, and so

$$
\begin{aligned}
\left|\frac{p}{q}-\sqrt{7}\right| & \geq\left|\frac{p}{q}\right|-\sqrt{7} \\
& \geq 3-\sqrt{7} \\
& >24-9 \sqrt{7} \\
& \geq \frac{24-9 \sqrt{7}}{q^{2}}
\end{aligned}
$$

In all cases, we have proved the desired inequality.
Problem 4 Let S be a set of n points in the coordinate plane. Say that a pair of points is aligned if the two points have the same x-coordinate or y-coordinate. Prove that S can be partitioned into disjoint subsets such that (a) each of these subsets is a collinear set of points, and (b) at most $n^{3 / 2}$ unordered pairs of distinct points in S are aligned but not in the same subset.

Solution: We will prove the result by strong induction on n. The case $n=0$ is trivial, so from now on assume that n is positive.

Assume that the result is true for every number less than n. Let L be the largest subset of S whose points all have the same x-coordinate or all have the same y-coordinate. Without loss of generality, assume that the points in L all have the same x-coordinate. Let k be the number of points in L.

Because L is largest, for every point in L, there are at most k points in $S-L$ with the same y-coordinate as the original point. So the number of points in $S-L$ that share a y-coordinate with some point in L is at most $k \cdot k=k^{2}$. On the other hand, the number of such points is at most n. Since the number of such points is at most k^{2} and at most n, it is at most the geometric mean of k^{2} and n, which is $k \sqrt{n}$. To summarize, we have shown that the number of points in $S-L$ with the same y-coordinate as some point in L is at most $k \sqrt{n}$.

By induction applied to the set $S-L$, we can partition $S-L$ into collinear subsets so that at most $(n-k)^{3 / 2}$ pairs of points are aligned but not in the same subset. By including L, we get a partition of S. Now, the number of "bad" pairs of points is at most $(n-k)^{3 / 2}+k \sqrt{n}$. But we have

$$
(n-k)^{3 / 2}+k \sqrt{n}=(n-k) \sqrt{n-k}+k \sqrt{n} \leq(n-k) \sqrt{n}+k \sqrt{n}=n^{3 / 2} .
$$

So we have established the result by induction.

