Math Prize for Girls Olympiad

November 10, 2011

1. Let $A_{0}, A_{1}, A_{2}, \ldots, A_{n}$ be nonnegative numbers such that

$$
A_{0} \leq A_{1} \leq A_{2} \leq \cdots \leq A_{n}
$$

Prove that

$$
\left|\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i}-\frac{1}{2} \sum_{i=0}^{n} A_{i}\right| \leq \frac{A_{n}}{2}
$$

(Note: $\lfloor x\rfloor$ means the greatest integer that is less than or equal to x.)
2. Let $\triangle A B C$ be an equilateral triangle. If $0<r<1$, let D_{r} be the point on $\overline{A B}$ such that $A D_{r}=r \cdot A B$, let E_{r} be the point on $\overline{B C}$ such that $B E_{r}=r \cdot B C$, and let P_{r} be the point where $\overline{A E_{r}}$ and $\overline{C D_{r}}$ intersect. Prove that the set of points P_{r} (over all $0<r<1$) lie on a circle.
3. Let n be a positive integer such that $n+1$ is divisible by 24 . Prove that the sum of all the positive divisors of n is divisible by 24 .
4. Let M be a matrix with r rows and c columns. Each entry of M is a nonnegative integer. Let a be the average of all $r c$ entries of M. If $r>(10 a+10)^{c}$, prove that M has two identical rows.

