MATH PRIZE FOR GIRLS OLYMPIAD NOVEMBER 10, 2011

1. Let $A_0, A_1, A_2, \ldots, A_n$ be nonnegative numbers such that

$$A_0 \le A_1 \le A_2 \le \dots \le A_n.$$

Prove that

$$\left|\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_{i} \right| \le \frac{A_{n}}{2}.$$

(Note: $\lfloor x \rfloor$ means the greatest integer that is less than or equal to x.)

- 2. Let $\triangle ABC$ be an equilateral triangle. If 0 < r < 1, let D_r be the point on \overline{AB} such that $AD_r = r \cdot AB$, let E_r be the point on \overline{BC} such that $BE_r = r \cdot BC$, and let P_r be the point where $\overline{AE_r}$ and $\overline{CD_r}$ intersect. Prove that the set of points P_r (over all 0 < r < 1) lie on a circle.
- **3.** Let *n* be a positive integer such that n + 1 is divisible by 24. Prove that the sum of all the positive divisors of *n* is divisible by 24.
- 4. Let M be a matrix with r rows and c columns. Each entry of M is a nonnegative integer. Let a be the average of all rc entries of M. If $r > (10a + 10)^c$, prove that M has two identical rows.