MATH PRIZE for GIRLS

2011 Olympiad Solutions

Problem 1 Let $A_{0}, A_{1}, A_{2}, \ldots, A_{n}$ be nonnegative numbers such that

$$
A_{0} \leq A_{1} \leq A_{2} \leq \cdots \leq A_{n} .
$$

Prove that

$$
\left|\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i}-\frac{1}{2} \sum_{i=0}^{n} A_{i}\right| \leq \frac{A_{n}}{2} .
$$

(Note: $\lfloor x\rfloor$ means the greatest integer that is less than or equal to x.)
Solution: We will first handle the case when n is even. We can write our main expression as an alternating sum:

$$
\begin{aligned}
\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i} & -\frac{1}{2} \sum_{i=0}^{n} A_{i} \\
& =\left(A_{0}+A_{2}+A_{4}+\cdots+A_{n}\right)-\frac{1}{2}\left(A_{0}+A_{1}+A_{2}+\cdots+A_{n}\right) \\
& =\frac{1}{2}\left(A_{0}-A_{1}+A_{2}-A_{3}+\cdots+A_{n}\right) .
\end{aligned}
$$

We then get the following upper bound:

$$
\begin{aligned}
\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i} & -\frac{1}{2} \sum_{i=0}^{n} A_{i} \\
& =\frac{1}{2}\left(A_{0}-A_{1}+A_{2}-A_{3}+\cdots+A_{n}\right) \\
& =\frac{1}{2}\left[\left(A_{0}-A_{1}\right)+\left(A_{2}-A_{3}\right)+\cdots+\left(A_{n-2}-A_{n-1}\right)+A_{n}\right] \\
& \leq \frac{1}{2}\left[0+0+\cdots+0+A_{n}\right] \\
& =\frac{A_{n}}{2} .
\end{aligned}
$$

We get a lower bound too:

$$
\begin{aligned}
\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i} & -\frac{1}{2} \sum_{i=0}^{n} A_{i} \\
& =\frac{1}{2}\left(A_{0}-A_{1}+A_{2}-A_{3}+\cdots+A_{n}\right) \\
& =\frac{1}{2}\left[A_{0}+\left(-A_{1}+A_{2}\right)+\left(-A_{3}+A_{4}\right)+\cdots+\left(-A_{n-1}+A_{n}\right)\right] \\
& \geq \frac{1}{2}\left[A_{0}+0+0+\cdots+0\right] \\
& =\frac{1}{2} A_{0}
\end{aligned}
$$

Our main expression is between $\frac{A_{0}}{2}$ and $\frac{A_{n}}{2}$. Hence its absolute value is at most $\frac{A_{n}}{2}$. We have settled the case when n is even.

Now we will handle the case when n is odd. We can again write our main expression as an alternating sum:

$$
\begin{aligned}
\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i} & -\frac{1}{2} \sum_{i=0}^{n} A_{i} \\
& =\left(A_{0}+A_{2}+A_{4}+\cdots+A_{n-1}\right)-\frac{1}{2}\left(A_{0}+A_{1}+A_{2}+\cdots+A_{n}\right) \\
& =\frac{1}{2}\left(A_{0}-A_{1}+A_{2}-A_{3}+\cdots+A_{n-1}-A_{n}\right) .
\end{aligned}
$$

We get the following upper bound:

$$
\begin{aligned}
\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i} & -\frac{1}{2} \sum_{i=0}^{n} A_{i} \\
& =\frac{1}{2}\left(A_{0}-A_{1}+A_{2}-A_{3}+\cdots+A_{n-1}-A_{n}\right) \\
& =\frac{1}{2}\left[\left(A_{0}-A_{1}\right)+\left(A_{2}-A_{3}\right)+\cdots+\left(A_{n-1}-A_{n}\right)\right] \\
& \leq \frac{1}{2}[0+0+\cdots+0] \\
& =0
\end{aligned}
$$

We also get a lower bound:

$$
\begin{aligned}
\sum_{i=0}^{\lfloor n / 2\rfloor} A_{2 i} & -\frac{1}{2} \sum_{i=0}^{n} A_{i} \\
& =\frac{1}{2}\left(A_{0}-A_{1}+A_{2}-A_{3}+\cdots+A_{n-1}-A_{n}\right) \\
& =\frac{1}{2}\left[A_{0}+\left(-A_{1}+A_{2}\right)+\cdots+\left(-A_{n-2}+A_{n-1}\right)-A_{n}\right] \\
& \geq \frac{1}{2}\left[A_{0}+0+0+\cdots+0-A_{n}\right] \\
& =\frac{1}{2}\left(A_{0}-A_{n}\right) \\
& \geq-\frac{1}{2} A_{n} .
\end{aligned}
$$

Our main expression is between $-\frac{A_{n}}{2}$ and 0 . Hence its absolute value is at most $\frac{A_{n}}{2}$. We have settled the case when n is odd too.

Problem 2 Let $\triangle A B C$ be an equilateral triangle. If $0<r<1$, let D_{r} be the point on $\overline{A B}$ such that $A D_{r}=r \cdot A B$, let E_{r} be the point on $\overline{B C}$ such that $B E_{r}=r \cdot B C$, and let P_{r} be the point where $\overline{A E_{r}}$ and $\overline{C D_{r}}$ intersect. Prove that the set of points P_{r} (over all $0<r<1$) lie on a circle.

Solution: Because $\triangle A B C$ is equilateral, $A B=C A$. Because $\triangle A B C$ is equiangular, $\angle A B E_{r}$ and $\angle C A D_{r}$ are both equal to 60°. By the definitions of D_{r} and E_{r}, we have

$$
B E_{r}=r \cdot B C=r \cdot A B=A D_{r}
$$

Hence, by Side-Angle-Side congruence, $\triangle A B E_{r}$ and $\triangle C A D_{r}$ are congruent.

Because $\triangle A B E_{r}$ is congruent to $\triangle C A D_{r}$, we have $\angle B A E_{r}=\angle A C D_{r}$. In other words, using the angle variables in the figure, $x=z$. Because $\angle A$ is 60°, we have $x+y=60^{\circ}$. Hence $y+z=60^{\circ}$. Because the angles of $\triangle A P_{r} C$ add up to 180°, we have

$$
\angle A P_{r} C=180^{\circ}-(y+z)=180^{\circ}-60^{\circ}=120^{\circ} .
$$

Consider two points P_{r} and P_{s}. By the previous paragraph

$$
\angle A P_{r} C=120^{\circ}=\angle A P_{s} C
$$

Hence, because P_{r} and P_{s} are on the same side of line $A C$, the points A, P_{r}, P_{s}, and C lie on a circle. To be specific, consider the circle that passes through $A, P_{1 / 2}$, and C. Then every point P_{r} lies on this circle.

Note: Ken Fan proposed the original version of this problem. Ken's version asked about the locus of P_{r} when $\triangle A B C$ was not assumed equilateral.

Problem 3 Let n be a positive integer such that $n+1$ is divisible by 24 . Prove that the sum of all the positive divisors of n is divisible by 24 .

Solution: Because $n+1$ is divisible by 24 , it is divisible by 8 (and hence 4) and by 3 . So n is $3 \bmod 4$ and $2 \bmod 3$. Every integer squared is either 0 or $1 \bmod 4$, so n is not a perfect square.

Let a and b be divisors of n such that $a b=n$. We claim that $(a+1)(b+1)$ is divisible by 24 . To prove the claim, we will show that $(a+1)(b+1)$ is divisible by 3 and by 8 . First, because $a b=n \equiv 2(\bmod 3)$, either a or b is $2 \bmod 3$. So either $a+1$ or $b+1$ is divisible by 3 , which means that $(a+1)(b+1)$ is divisible by 3 . Second, because $a b=n \equiv 3(\bmod 4)$, we know that a and b are 1 and $3 \bmod 4$ (in some order). So $a+1$ and $b+1$ are 2 and $0 \bmod 4$ (in some order), which means that $(a+1)(b+1)$ is divisible by 8 . Summarizing, we have shown that $(a+1)(b+1)$ is divisible by 24 .

Now we show that if a and b are divisors of n such that $a b=n$, then $a+b$ is divisible by 24 . We have

$$
(a+1)(b+1)=a b+a+b+1=n+a+b+1=(n+1)+(a+b) .
$$

The previous paragraph showed that $(a+1)(b+1)$ is divisible by 24 , and by hypothesis $n+1$ is divisible by 24 . So $a+b$ is divisible by 24 too.

Now consider all the positive divisors of n. Because n is not a perfect square, these divisors can be partitioned into pairs $\{a, b\}$ such that $a b=n$.

But the previous paragraph showed that $a+b$ is divisible by 24 . Since the sum of each pair is divisible by 24 , the sum of all the positive divisors is divisible by 24 too.

Problem 4 Let M be a matrix with r rows and c columns. Each entry of M is a nonnegative integer. Let a be the average of all $r c$ entries of M. If $r>(10 a+10)^{c}$, prove that M has two identical rows.

Solution: Define the weight of an entry x of the matrix to be p^{x}, where $p=\frac{a}{a+1}$. The weight of a row of the matrix is the product of the weights of the entries in that row. The weight of the matrix is the sum of the weights of its rows.

Assume that M has no two identical rows. We will show that $r \leq(10 a+$ $10)^{c}$. To do so, we will analyze the weight of the matrix. First, we will bound the weight from above. We claim that the weight of the matrix is at most

$$
\left(1+p+p^{2}+\ldots\right)^{c}
$$

Imagine expanding this expression. We would get the weight of every possible row. Because no row of M repeats, the weight of M is at most this expression. By geometric series, this expression evaluates to

$$
\left(\frac{1}{1-p}\right)^{c}=\left(\frac{1}{1-\frac{a}{a+1}}\right)^{c}=(a+1)^{c} .
$$

So the weight of the matrix is at most $(a+1)^{c}$.
We will now develop a lower bound on the weight of the matrix. Let S_{i} be the sum of the entries of row i. The weight of row i is $p^{S_{i}}$. So the weight of the matrix is

$$
\sum_{i=1}^{r} p^{S_{i}}
$$

By the AM-GM inequality, this weight is at least

$$
r\left(\prod_{i=1}^{r} p^{S_{i}}\right)^{1 / r}=r\left(p^{\sum_{i=1}^{r} S_{i}}\right)^{1 / r}
$$

The sum of the row sums S_{i} is the sum of the entries in the whole matrix, which is arc. So the weight of the matrix is at least

$$
r\left(p^{a r c}\right)^{1 / r}=r p^{a c} .
$$

Comparing the lower and upper bounds on the weight of the matrix, we get the inequality

$$
r p^{a c} \leq(a+1)^{c}
$$

Solving for r, we find

$$
r \leq\left(\frac{1}{p}\right)^{a c}(a+1)^{c}=\left(\frac{a+1}{a}\right)^{a c}(a+1)^{c}=\left(\frac{(a+1)^{a+1}}{a^{a}}\right)^{c}
$$

Now all we have to do is show that

$$
\frac{(a+1)^{a+1}}{a^{a}} \leq 10 a+10
$$

It is well-known that $\left(1+\frac{1}{a}\right)^{a}$ is an increasing function of a that converges to e, the base of the natural logarithm. In particular, we have

$$
\left(1+\frac{1}{a}\right)^{a}<e
$$

That's equivalent to

$$
\frac{(a+1)^{a}}{a^{a}}<e
$$

Multiplying by $a+1$ gives

$$
\frac{(a+1)^{a+1}}{a^{a}}<e(a+1) .
$$

Because $e<10$, we have

$$
\frac{(a+1)^{a+1}}{a^{a}}<10(a+1)=10 a+10 .
$$

That's all we had left to show.

