

2011 Olympiad Solutions

Problem 1 Let $A_0, A_1, A_2, \ldots, A_n$ be nonnegative numbers such that

$$A_0 \le A_1 \le A_2 \le \dots \le A_n.$$

Prove that

$$\left|\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_{i} \right| \le \frac{A_{n}}{2}.$$

(Note: |x| means the greatest integer that is less than or equal to x.)

Solution: We will first handle the case when n is even. We can write our main expression as an alternating sum:

$$\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_i$$

= $(A_0 + A_2 + A_4 + \dots + A_n) - \frac{1}{2} (A_0 + A_1 + A_2 + \dots + A_n)$
= $\frac{1}{2} (A_0 - A_1 + A_2 - A_3 + \dots + A_n).$

We then get the following upper bound:

$$\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_i$$

= $\frac{1}{2} (A_0 - A_1 + A_2 - A_3 + \dots + A_n)$
= $\frac{1}{2} [(A_0 - A_1) + (A_2 - A_3) + \dots + (A_{n-2} - A_{n-1}) + A_n]$
 $\leq \frac{1}{2} [0 + 0 + \dots + 0 + A_n]$
= $\frac{A_n}{2}$.

We get a lower bound too:

$$\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_i$$

= $\frac{1}{2} (A_0 - A_1 + A_2 - A_3 + \dots + A_n)$
= $\frac{1}{2} \Big[A_0 + (-A_1 + A_2) + (-A_3 + A_4) + \dots + (-A_{n-1} + A_n) \Big]$
 $\geq \frac{1}{2} \Big[A_0 + 0 + 0 + \dots + 0 \Big]$
= $\frac{1}{2} A_0.$

Our main expression is between $\frac{A_0}{2}$ and $\frac{A_n}{2}$. Hence its absolute value is at most $\frac{A_n}{2}$. We have settled the case when n is even.

Now we will handle the case when n is odd. We can again write our main expression as an alternating sum:

$$\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_i$$

= $(A_0 + A_2 + A_4 + \dots + A_{n-1}) - \frac{1}{2} (A_0 + A_1 + A_2 + \dots + A_n)$
= $\frac{1}{2} (A_0 - A_1 + A_2 - A_3 + \dots + A_{n-1} - A_n).$

We get the following upper bound:

$$\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_i$$

= $\frac{1}{2} (A_0 - A_1 + A_2 - A_3 + \dots + A_{n-1} - A_n)$
= $\frac{1}{2} [(A_0 - A_1) + (A_2 - A_3) + \dots + (A_{n-1} - A_n)]$
 $\leq \frac{1}{2} [0 + 0 + \dots + 0]$
= 0.

We also get a lower bound:

$$\sum_{i=0}^{\lfloor n/2 \rfloor} A_{2i} - \frac{1}{2} \sum_{i=0}^{n} A_i$$

= $\frac{1}{2} (A_0 - A_1 + A_2 - A_3 + \dots + A_{n-1} - A_n)$
= $\frac{1}{2} \Big[A_0 + (-A_1 + A_2) + \dots + (-A_{n-2} + A_{n-1}) - A_n \Big]$
 $\geq \frac{1}{2} \Big[A_0 + 0 + 0 + \dots + 0 - A_n \Big]$
= $\frac{1}{2} (A_0 - A_n)$
 $\geq -\frac{1}{2} A_n.$

Our main expression is between $-\frac{A_n}{2}$ and 0. Hence its absolute value is at most $\frac{A_n}{2}$. We have settled the case when n is odd too.

Problem 2 Let $\triangle ABC$ be an equilateral triangle. If 0 < r < 1, let D_r be the point on \overline{AB} such that $AD_r = r \cdot AB$, let E_r be the point on \overline{BC} such that $BE_r = r \cdot BC$, and let P_r be the point where $\overline{AE_r}$ and $\overline{CD_r}$ intersect. Prove that the set of points P_r (over all 0 < r < 1) lie on a circle.

Solution: Because $\triangle ABC$ is equilateral, AB = CA. Because $\triangle ABC$ is equiangular, $\angle ABE_r$ and $\angle CAD_r$ are both equal to 60°. By the definitions of D_r and E_r , we have

$$BE_r = r \cdot BC = r \cdot AB = AD_r.$$

Hence, by Side-Angle-Side congruence, $\triangle ABE_r$ and $\triangle CAD_r$ are congruent.

Because $\triangle ABE_r$ is congruent to $\triangle CAD_r$, we have $\angle BAE_r = \angle ACD_r$. In other words, using the angle variables in the figure, x = z. Because $\angle A$ is 60°, we have $x + y = 60^{\circ}$. Hence $y + z = 60^{\circ}$. Because the angles of $\triangle AP_rC$ add up to 180°, we have

$$\angle AP_rC = 180^\circ - (y+z) = 180^\circ - 60^\circ = 120^\circ.$$

Consider two points P_r and P_s . By the previous paragraph

$$\angle AP_rC = 120^\circ = \angle AP_sC.$$

Hence, because P_r and P_s are on the same side of line AC, the points A, P_r , P_s , and C lie on a circle. To be specific, consider the circle that passes through A, $P_{1/2}$, and C. Then every point P_r lies on this circle.

Note: Ken Fan proposed the original version of this problem. Ken's version asked about the locus of P_r when $\triangle ABC$ was not assumed equilateral.

Problem 3 Let n be a positive integer such that n + 1 is divisible by 24. Prove that the sum of all the positive divisors of n is divisible by 24.

Solution: Because n + 1 is divisible by 24, it is divisible by 8 (and hence 4) and by 3. So n is 3 mod 4 and 2 mod 3. Every integer squared is either 0 or 1 mod 4, so n is not a perfect square.

Let a and b be divisors of n such that ab = n. We claim that (a+1)(b+1)is divisible by 24. To prove the claim, we will show that (a + 1)(b + 1) is divisible by 3 and by 8. First, because $ab = n \equiv 2 \pmod{3}$, either a or b is 2 mod 3. So either a + 1 or b + 1 is divisible by 3, which means that (a + 1)(b + 1) is divisible by 3. Second, because $ab = n \equiv 3 \pmod{4}$, we know that a and b are 1 and 3 mod 4 (in some order). So a + 1 and b + 1 are 2 and 0 mod 4 (in some order), which means that (a + 1)(b + 1) is divisible by 8. Summarizing, we have shown that (a + 1)(b + 1) is divisible by 24.

Now we show that if a and b are divisors of n such that ab = n, then a+b is divisible by 24. We have

$$(a+1)(b+1) = ab + a + b + 1 = n + a + b + 1 = (n+1) + (a+b).$$

The previous paragraph showed that (a + 1)(b + 1) is divisible by 24, and by hypothesis n + 1 is divisible by 24. So a + b is divisible by 24 too.

Now consider all the positive divisors of n. Because n is not a perfect square, these divisors can be partitioned into pairs $\{a, b\}$ such that ab = n.

But the previous paragraph showed that a + b is divisible by 24. Since the sum of each pair is divisible by 24, the sum of all the positive divisors is divisible by 24 too.

Problem 4 Let M be a matrix with r rows and c columns. Each entry of M is a nonnegative integer. Let a be the average of all rc entries of M. If $r > (10a + 10)^c$, prove that M has two identical rows.

Solution: Define the *weight* of an entry x of the matrix to be p^x , where $p = \frac{a}{a+1}$. The *weight* of a row of the matrix is the product of the weights of the entries in that row. The *weight* of the matrix is the sum of the weights of its rows.

Assume that M has no two identical rows. We will show that $r \leq (10a + 10)^c$. To do so, we will analyze the weight of the matrix. First, we will bound the weight from above. We claim that the weight of the matrix is at most

$$\left(1+p+p^2+\dots\right)^c.$$

Imagine expanding this expression. We would get the weight of every possible row. Because no row of M repeats, the weight of M is at most this expression. By geometric series, this expression evaluates to

$$\left(\frac{1}{1-p}\right)^c = \left(\frac{1}{1-\frac{a}{a+1}}\right)^c = (a+1)^c.$$

So the weight of the matrix is at most $(a+1)^c$.

We will now develop a lower bound on the weight of the matrix. Let S_i be the sum of the entries of row *i*. The weight of row *i* is p^{S_i} . So the weight of the matrix is

$$\sum_{i=1}' p^{S_i}$$

By the AM-GM inequality, this weight is at least

$$r\left(\prod_{i=1}^r p^{S_i}\right)^{1/r} = r\left(p^{\sum_{i=1}^r S_i}\right)^{1/r}.$$

The sum of the row sums S_i is the sum of the entries in the whole matrix, which is *arc*. So the weight of the matrix is at least

$$r\left(p^{arc}\right)^{1/r} = rp^{ac}.$$

Comparing the lower and upper bounds on the weight of the matrix, we get the inequality

$$rp^{ac} \le (a+1)^c.$$

Solving for r, we find

$$r \le \left(\frac{1}{p}\right)^{ac} (a+1)^c = \left(\frac{a+1}{a}\right)^{ac} (a+1)^c = \left(\frac{(a+1)^{a+1}}{a^a}\right)^c.$$

Now all we have to do is show that

$$\frac{(a+1)^{a+1}}{a^a} \le 10a + 10.$$

It is well-known that $(1 + \frac{1}{a})^a$ is an increasing function of a that converges to e, the base of the natural logarithm. In particular, we have

$$\left(1 + \frac{1}{a}\right)^a < e.$$

That's equivalent to

$$\frac{(a+1)^a}{a^a} < e.$$

Multiplying by a + 1 gives

$$\frac{(a+1)^{a+1}}{a^a} < e(a+1).$$

Because e < 10, we have

$$\frac{(a+1)^{a+1}}{a^a} < 10(a+1) = 10a+10.$$

That's all we had left to show.