
 Math Prize for Girls at MIT

 2011 Solutions

 2011 Solutions}

Problem 1 If m and n are integers such that $3 m+4 n=100$, what is the smallest possible value of $|m-n|$?

Answer: 3.

Solution: One pair (m, n) that satisfies the constraints is $(0,25)$. We get all the other pairs by repeatedly adding 4 to m and subtracting 3 from n (or subtracting 4 from m and adding 3 to n). So the list of pairs is

$$
\ldots,(0,25),(4,22),(8,19),(12,16),(16,13),(20,10), \ldots
$$

The corresponding difference $m-n$ is

$$
\ldots,-25,-18,-11,-4,3,10, \ldots
$$

As we see, the differences go up by 7 . The smallest absolute difference is 3 .
Problem 2 Express $\sqrt{2+\sqrt{3}}$ in the form $\frac{a+\sqrt{b}}{\sqrt{c}}$, where a is a positive integer and b and c are square-free positive integers.
Answer: $\frac{1+\sqrt{3}}{\sqrt{2}}$ or $\frac{3+\sqrt{3}}{\sqrt{6}}$.
Solution: If $\frac{a+\sqrt{b}}{\sqrt{c}}$ equals $\sqrt{2+\sqrt{3}}$, then squaring gives

$$
\frac{a^{2}+b+2 a \sqrt{b}}{c}=2+\sqrt{3} .
$$

Multiplying by c gives

$$
a^{2}+b+2 a \sqrt{b}=2 c+c \sqrt{3} .
$$

AT Math Prize for Girls 2011 Solutions

Rearranging gives

$$
a^{2}-2 c+b=c \sqrt{3}-2 a \sqrt{b}
$$

To make the square of the right side an integer, $3 b$ must be a perfect square. Because b is square-free, we must have $b=3$. Substituting $b=3$ gives

$$
a^{2}-2 c+3=(c-2 a) \sqrt{3}
$$

Because $\sqrt{3}$ is irrational, both sides must be zero. So we have $c=2 a$ and $a^{2}-2 c+3=0$. Substituting $c=2 a$ into $a^{2}-2 c+3=0$ gives

$$
a^{2}-4 a+3=0
$$

So a is either 1 or 3 . The corresponding value of c is 2 or 6 , respectively. All the previous steps are reversible, so both solutions are valid.

Problem 3 The figure below shows a triangle $A B C$ with a semicircle on each of its three sides.

If $A B=20, A C=21$, and $B C=29$, what is the area of the shaded region?
Answer: 210.
Solution: On one hand, the whole region can be viewed as the (disjoint) union of the semicircle with diameter $\overline{B C}$ and the shaded region. On the other hand, the whole region can be viewed as the (disjoint) union of the semicircle with diameter $\overline{A B}$, the semicircle with diameter $\overline{A C}$, and the triangle $A B C$. We know that $\angle B A C$ is a right angle, since it is inscribed in a semicircle (or since 20-21-29 is a Pythagorean triple). By the Pythagorean theorem, the area of the semicircle with diameter $\overline{B C}$ must equal the sum of the areas of the two semicircles with diameters $\overline{A B}$ and $\overline{A C}$. The areas of the semicircles cancel out, and hence the area of the shaded region is equal to the area of triangle $A B C$. The area of the triangle is

$$
\frac{20 \cdot 21}{2}=10 \cdot 21=210
$$

AT Math Prize for Girls $2011 \quad$ Solutions

Note: This problem is basically the ancient problem of finding the area of the lune of Hippocrates.

Problem 4 If $x>10$, what is the greatest possible value of the expression

$$
(\log x)^{\log \log \log x}-(\log \log x)^{\log \log x} ?
$$

All the logarithms are base 10 .
Answer: 0.
Solution: The first term of the given expression is

$$
\begin{aligned}
(\log x)^{\log \log \log x} & =\left(10^{\log \log x}\right)^{\log \log \log x} \\
& =10^{(\log \log x)(\log \log \log x)}
\end{aligned}
$$

The second term is

$$
\begin{aligned}
(\log \log x)^{\log \log x} & =\left(10^{\log \log \log x}\right)^{\log \log x} \\
& =10^{(\log \log \log x)(\log \log x)} \\
& =10^{(\log \log x)(\log \log \log x)}
\end{aligned}
$$

The two terms are equal! So their difference is always 0 .
Problem 5 Let $\triangle A B C$ be a triangle with $A B=3, B C=4$, and $A C=5$. Let I be the center of the circle inscribed in $\triangle A B C$. What is the product of $A I, B I$, and $C I$?
Answer: 10.
Solution: Below is a picture of $\triangle A B C$ and its inscribed circle.

AT Math Prize for Girls 2011 Solutions

Because the tangents from A to the circle have the same length, we called both lengths x. We did something similar for the other tangents. Because $A B=3$, we have $x+y=3$. Similarly $y+z=4$ and $x+z=5$. Solving these three equations gives $x=2, y=1$, and $z=3$.

Let's subsitute these numbers into our picture. At the same time, let's draw a couple of radii.

Because $\triangle A B C$ is a 3-4-5 triangle, $\angle B$ is a right angle. The two displayed radii form right angles with their tangents. So the displayed quadrilateral is actually a rectangle. In fact, since two of its sides have length 1 , the quadrilateral is a square of side length 1. In particular, the radius of the circle is 1 .

Next, let's draw segments from the incenter I to the vertices.

By the Pythagorean theorem, we have $A I=\sqrt{2^{2}+1^{2}}=\sqrt{5}$. Similarly, we have $B I=\sqrt{1^{2}+1^{2}}=\sqrt{2}$. Similarly, we have $C I=\sqrt{3^{2}+1^{2}}=\sqrt{10}$. The product of these three lengths is

$$
\sqrt{5} \cdot \sqrt{2} \cdot \sqrt{10}=\sqrt{10} \cdot \sqrt{10}=10
$$

Problem 6 Two circles each have radius 1. No point is inside both circles. The circles are contained in a square. What is the area of the smallest such

AT Math Prize for Girls 2011 Solutions

square? Express your answer in the form $a+b \sqrt{c}$, where a and b are positive integers and c is a square-free positive integer.
Answer: $6+4 \sqrt{2}$.
Solution: Consider the picture below of two circles in a square.

Each circle has radius 1. The segment joining the two centers forms a 45° angle with the horizontal and vertical lines. The distance between the two centers is 2 . So the horizontal distance between the two centers is $\sqrt{2}$. Hence the side length of the square is $2+\sqrt{2}$. Thus the area of the square is

$$
(2+\sqrt{2})^{2}=4+4 \sqrt{2}+2=6+4 \sqrt{2}
$$

We will now show that the configuration above is optimal. Consider any configuration of two circles in a square satisfying the conditions of the problem. Let s be the side length of the square. We may impose a coordinate system on the configuration, so that the vertices of the square are $(0,0)$, $(s, 0),(s, s)$, and $(0, s)$. Because the two circles of radius 1 are contained in the square, the centers of the circles have x-coordinates and y-coordinates between 1 and $s-1$. So the distance between the two centers is at most $(s-2) \sqrt{2}$. Because the two circles are disjoint, the distance between the two centers is at least 2 . So we get the inequality $(s-2) \sqrt{2} \geq 2$. Solving for s gives $s \geq 2+\sqrt{2}$. So the area of the square is at least $(2+\sqrt{2})^{2}$, which is $6+4 \sqrt{2}$.

Problem 7 If z is a complex number such that

$$
z+z^{-1}=\sqrt{3}
$$

what is the value of

$$
z^{2010}+z^{-2010} ?
$$

Answer: - 2 .

AT Math Prize for Girls 2011 Solutions

Solution: We are given that

$$
z+z^{-1}=\sqrt{3}=2 \cdot \frac{\sqrt{3}}{2}=2 \cos \frac{\pi}{6} .
$$

Hence z is either $\operatorname{cis} \frac{\pi}{6}$ or $\operatorname{cis}\left(-\frac{\pi}{6}\right)$.
Let's assume that z is cis $\frac{\pi}{6}$. (The other case is similar.) We have

$$
z^{2010}=\left(\operatorname{cis} \frac{\pi}{6}\right)^{2010}=\operatorname{cis} \frac{2010 \pi}{6}=\operatorname{cis}(335 \pi)=\operatorname{cis} \pi=-1 .
$$

So z^{-2010} is -1 also. Thus

$$
z^{2010}+z^{-2010}=-1+(-1)=-2 .
$$

Problem 8 In the figure below, points A, B, and C are distance 6 from each other. Say that a point X is reachable if there is a path (not necessarily straight) connecting A and X of length at most 8 that does not intersect the interior of $\overline{B C}$. (Both X and the path must lie on the plane containing A, B, and C.) Let R be the set of reachable points. What is the area of R ? Express your answer in the form $m \pi+n \sqrt{3}$, where m and n are integers.

Answer: $56 \pi+9 \sqrt{3}$.
Solution: The picture below shows all the reachable points.

AT Math Prize for Girls 2011 Solutions

Each point in $\triangle A B C$ is reachable, since the straight path from that point to A is of length at most 6 . Each point in the displayed sector with center A and radius 8 is reachable, since the straight path from that point to A is of length at most 8 . Each point in the displayed sector with center B and radius 2 is reachable, since the path from that point to B and then to A is of length at most $2+6=8$. Similarly, each point in the displayed sector with center C and radius 2 is reachable. No point outside of these regions is reachable.

The sector with center A and radius 8 is a 300° sector. Hence the sector is $\frac{5}{6}$ of a circle. Its area is thus $\frac{5}{6} \pi(8)^{2}$, which simplifies to $\frac{160}{3} \pi$. The sector with center B and radius 2 is a 120° sector. Hence the sector is $\frac{1}{3}$ of a circle. Its area is thus $\frac{1}{3} \pi(2)^{2}$, which simplifies to $\frac{4}{3} \pi$. Similarly, the sector with center C has area $\frac{4}{3} \pi$. The total area of the three sectors is therefore

$$
\frac{160 \pi}{3}+\frac{4 \pi}{3}+\frac{4 \pi}{3}=\frac{168 \pi}{3}=56 \pi
$$

By the "2-3-4" formula, the area of the equilateral triangle $A B C$ (with side length 6) is

$$
\frac{(6)^{2} \sqrt{3}}{4}=\frac{36 \sqrt{3}}{4}=9 \sqrt{3}
$$

So the area of the reachable region is $56 \pi+9 \sqrt{3}$.
Problem 9 Let $A B C$ be a triangle. Let D be the midpoint of $\overline{B C}$, let E be the midpoint of $\overline{A D}$, and let F be the midpoint of $\overline{B E}$. Let G be the point

AT Math Prize for Girls 2011 Solutions

where the lines $A B$ and $C F$ intersect. What is the value of $\frac{A G}{A B}$? Express your answer as a fraction in simplest form.
Answer: $\frac{5}{7}$.
Solution: We will use mass points to solve this problem. Because D is the midpoint of $\overline{B C}$, we have

$$
D=\frac{1}{2} B+\frac{1}{2} C .
$$

Because E is the midpoint of $\overline{A D}$, we have

$$
E=\frac{1}{2} A+\frac{1}{2} D=\frac{1}{2} A+\frac{1}{2}\left(\frac{1}{2} B+\frac{1}{2} C\right)=\frac{1}{2} A+\frac{1}{4} B+\frac{1}{4} C .
$$

Because F is the midpoint of $\overline{B E}$, we have

$$
F=\frac{1}{2} B+\frac{1}{2} E=\frac{1}{2} B+\frac{1}{2}\left(\frac{1}{2} A+\frac{1}{4} B+\frac{1}{4} C\right)=\frac{1}{4} A+\frac{5}{8} B+\frac{1}{8} C .
$$

We can rewrite F as follows:

$$
F=\frac{7}{8}\left(\frac{2}{7} A+\frac{5}{7} B\right)+\frac{1}{8} C .
$$

Define G^{\prime} to be $\frac{2}{7} A+\frac{5}{7} B$. By definition, G^{\prime} is on $\overline{A B}$. On the other hand, from the displayed equation above, we have

$$
F=\frac{7}{8} G^{\prime}+\frac{1}{8} C .
$$

So G^{\prime} is on the line $C F$. Hence G^{\prime} must be the point G where lines $A B$ and $C F$ intersect. Looking at the definition of G^{\prime}, we have $A G=\frac{5}{7} A B$. Hence $\frac{A G}{A B}$ is $\frac{5}{7}$.

Problem 10 There are real numbers a and b such that for every positive number x, we have the identity

$$
\tan ^{-1}\left(\frac{1}{x}-\frac{x}{8}\right)+\tan ^{-1}(a x)+\tan ^{-1}(b x)=\frac{\pi}{2} .
$$

(Throughout this equation, $\tan ^{-1}$ means the inverse tangent function, sometimes written arctan.) What is the value of $a^{2}+b^{2}$? Express your answer as a fraction in simplest form.
Answer: $\frac{3}{4}$.

AT Math Prize for Girls 2011 Solutions

Solution: Rearranging the given equation, we have

$$
\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{x}-\frac{x}{8}\right)=\tan ^{-1}(a x)+\tan ^{-1}(b x)
$$

The tangent of the left side is

$$
\tan \left(\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{x}-\frac{x}{8}\right)\right)=\frac{1}{\tan \left(\tan ^{-1}\left(\frac{1}{x}-\frac{x}{8}\right)\right)}=\frac{1}{\frac{1}{x}-\frac{x}{8}}=\frac{x}{1-\frac{1}{8} x^{2}}
$$

By the tangent addition formula, the tangent of the right side is

$$
\tan \left(\tan ^{-1}(a x)+\tan ^{-1}(b x)\right)=\frac{a x+b x}{1-(a x)(b x)}=\frac{(a+b) x}{1-a b x^{2}}
$$

In order for both sides to be equal for every positive number x, we must have $a+b=1$ and $a b=\frac{1}{8}$. Hence

$$
a^{2}+b^{2}=(a+b)^{2}-2 a b=1^{2}-2\left(\frac{1}{8}\right)=1-\frac{1}{4}=\frac{3}{4} .
$$

Problem 11 The sequence $a_{0}, a_{1}, a_{2}, \ldots$ satisfies the recurrence equation

$$
a_{n}=2 a_{n-1}-2 a_{n-2}+a_{n-3}
$$

for every integer $n \geq 3$. If $a_{20}=1, a_{25}=10$, and $a_{30}=100$, what is the value of a_{1331} ?
Answer: 181.
Solution: Let's calculate the first few values of the sequence, looking for a pattern. Plugging $n=3$ into the recurrence equation, we get

$$
a_{3}=2 a_{2}-2 a_{1}+a_{0} .
$$

Plugging in $n=4$ gives

$$
a_{4}=2 a_{3}-2 a_{2}+a_{1}=2\left(2 a_{2}-2 a_{1}+a_{0}\right)=2 a_{2}-3 a_{1}+2 a_{0}
$$

Plugging in $n=5$ gives

$$
\begin{aligned}
a_{5} & =2 a_{4}-2 a_{3}+a_{2} \\
& =2\left(2 a_{2}-3 a_{1}+2 a_{0}\right)-2\left(2 a_{2}-2 a_{1}+a_{0}\right)+a_{2} \\
& =a_{2}-2 a_{1}+2 a_{0} .
\end{aligned}
$$

AT Math Prize for Girls 2011 Solutions

Plugging in $n=6$ gives

$$
\begin{aligned}
a_{6} & =2 a_{5}-2 a_{4}+a_{3} \\
& =2\left(a_{2}-2 a_{1}+2 a_{0}\right)-2\left(2 a_{2}-3 a_{1}+2 a_{0}\right)+\left(2 a_{2}-2 a_{1}+a_{0}\right) \\
& =a_{0} .
\end{aligned}
$$

Aha! We discovered that $a_{6}=a_{0}$. A similar calculation reveals that $a_{7}=a_{1}$, $a_{8}=a_{2}$, and so on. The sequence is 6 -periodic.

Because the sequence is 6-periodic, we have $a_{2}=a_{20}=1$. Similarly, we have $a_{1}=a_{25}=10$. Also, we have $a_{0}=100$. Finally, we have $a_{1331}=a_{5}$. According to our work above, we have

$$
a_{1331}=a_{5}=a_{2}-2 a_{1}+2 a_{0}=1-2(10)+2(100)=1-20+200=181 .
$$

Problem 12 If x is a real number, let $\lfloor x\rfloor$ be the greatest integer that is less than or equal to x. If n is a positive integer, let $S(n)$ be defined by

$$
S(n)=\left\lfloor\frac{n}{10^{\lfloor\log n\rfloor}}\right\rfloor+10\left(n-10^{\lfloor\log n\rfloor} \cdot\left\lfloor\frac{n}{10^{\lfloor\log n\rfloor}}\right\rfloor\right) .
$$

(All the logarithms are base 10.) How many integers n from 1 to 2011 (inclusive) satisfy $S(S(n))=n$?

Answer: 108.
Solution: The expression $\lfloor\log n\rfloor$ is 1 less than the number of digits of n. So $\left\lfloor\frac{n}{10^{\log n\rfloor}}\right\rfloor$ is the first digit (from the left) of n. Hence

$$
n-10^{\lfloor\log n\rfloor} \cdot\left\lfloor\frac{n}{10^{\lfloor\log n\rfloor}}\right\rfloor
$$

is just n with the first digit of n erased. Therefore, $S(n)$ itself is a cyclic shift (1 digit to the left) of the digits of n. For example, $S(1234)=2341$. Also, $S(1034)=0341=341$.

If the second digit of n is nonzero (or if n has just one digit), then $S(S(n))$ is a cyclic shift (2 digits to the left) of the digits of n. For example, $S(S(1234))=3412$. But if the second digit of n is zero, then $S(n)$ and hence $S(S(n))$ have fewer digits than n. For example, $S(S(1034))=413$.

Now let's count n (with $1 \leq n \leq 2011$) such that $S(S(n))=n$. We divide into cases depending on how many digits n has.

Case n is a 1-digit integer (with $n \geq 1$): Then $S(n)=n$, so $S(S(n))=n$. In other words, all positive 1-digit integers contribute, giving a count of 9 .

Case n is a 2-digit integer $a b$: We have $S(a b)=b a$. If b is nonzero, then $S(S(a b))=a b$. But if b is zero, then $S(S(a b))$ will have fewer than 2 digits. So we're counting the two-digit integers whose digits are both nonzero. The count is $9 \cdot 9$, or 81 .

Case n is a 3-digit integer $a b c$: We have $S(a b c)=b c a$. Again if b were zero, then $S(S(a b c)$) will have too few digits. So b is nonzero. Then $S(S(a b c))=S(b c a)=c a b$. We need $a b c=c a b$, which means $a=b=c$. The total count is 9 .

Case n is a 4-digit integer $a b c d$ (with $n \leq 2011$): We have $S(a b c d)=$ $b c d a$. Again, we must have b nonzero. Then $S(S(a b c d))=S(b c d a)=c d a b$. So we must have $a b c d=c d a b$. Comparing digit by digit, we must have $a=c$ and $b=d$. Because n is at most 2011, we must have $a=c=1$. We have 9 choices for b. The total count is 9 .

Adding all four cases, we get a final count of $9+81+9+9$, which is 108 .
Problem 13 The number 104,060,465 is divisible by a five-digit prime number. What is that prime number?
Answer: 10,613.
Solution: The number 104,060,465 looks like Row 4 of Pascal's triangle: 1, $4,6,4,1$. In particular, we have

$$
104,060,465=104,060,401+64=101^{4}+64=\left(101^{2}\right)^{2}+64=10201^{2}+8^{2}
$$

Let's try to complete the square:

$$
\begin{aligned}
104,060,465 & =10201^{2}+8^{2} \\
& =\left(10201^{2}+2(10201) 8+8^{2}\right)^{2}-2(10201) 8 \\
& =(10201+8)^{2}-16(10201) \\
& =10209^{2}-4^{2} \cdot 101^{2} \\
& =10209^{2}-404^{2}
\end{aligned}
$$

We can now apply difference of squares:

$$
\begin{aligned}
104,060,465 & =10209^{2}-404^{2} \\
& =(10209-404)(10209+404) \\
& =(9805)(10613)
\end{aligned}
$$

AT Math Prize for Girls 2011 Solutions

The five-digit prime divisor of $104,060,465$ can't divide 9805 , and so must divide 10613. But the only five-digit divisor of 10613 is itself, so the fivedigit prime divisor is 10613 .

Here is an alternative solution. We will start with our first observation above:

$$
104,060,465=101^{4}+64
$$

We now recall the identity due to Sophie Germain:

$$
a^{4}+4 b^{4}=\left(a^{2}+2 a b+2 b^{2}\right)\left(a^{2}-2 a b+2 b^{2}\right) .
$$

(One way to prove Germain's identity is to add and subtract $4 a^{2} b^{2}$ on the left side.) Setting $a=101$ and $b=2$, we get

$$
\begin{aligned}
101^{4}+64 & =\left[101^{2}+2(101) 2+2(2)^{2}\right] \cdot\left[101^{2}-2(101) 2+2(2)^{2}\right] \\
& =(10201+404+8)(10201-404+8) \\
& =(9805)(10613) .
\end{aligned}
$$

As before, the five-digit prime number must be 10613 .
Problem 14 If $0 \leq p \leq 1$ and $0 \leq q \leq 1$, define $F(p, q)$ by

$$
F(p, q)=-2 p q+3 p(1-q)+3(1-p) q-4(1-p)(1-q) .
$$

Define $G(p)$ to be the maximum of $F(p, q)$ over all q (in the interval $0 \leq q \leq$ 1). What is the value of p (in the interval $0 \leq p \leq 1$) that minimizes $G(p)$? Express your answer as a fraction in simplest form.
Answer: $\frac{7}{12}$.
Solution: For fixed p, the expression for $F(p, q)$ is linear in q. Hence $G(p)$ is the maximum of the end values $F(p, 0)$ and $F(p, 1)$. Plugging in $q=0$, we see that $F(p, 0)$ is

$$
F(p, 0)=3 p-4(1-p)=7 p-4
$$

Plugging in $q=1$, we see that $F(p, 1)$ is

$$
F(p, 1)=-2 p+3(1-p)=3-5 p
$$

Hence $G(p)$ is $\max (7 p-4,3-5 p)$.

AT Math Prize for Girls 2011 Solutions

To get a feel for $G(p)$, let's compare the two expressions $7 p-4$ and $3-5 p$. When $p=\frac{7}{12}$, the two expressions are equal. When $p<\frac{7}{12}$, the second expression is greater. When $p>\frac{7}{12}$, the first expression is greater. So G is linear on $\left[0, \frac{7}{12}\right]$ and is linear on $\left[\frac{7}{12}, 1\right]$. We calculate that $G(0)=3$, $G\left(\frac{7}{12}\right)=\frac{1}{12}$, and $G(1)=3$. So the minimum value of $G(p)$ occurs when p is $\frac{7}{12}$.

Problem 15 The game of backgammon has a "doubling" cube, which is like a standard 6 -faced die except that its faces are inscribed with the numbers 2, $4,8,16,32$, and 64 , respectively. After rolling the doubling cube four times at random, we let a be the value of the first roll, b be the value of the second roll, c be the value of the third roll, and d be the value of the fourth roll. What is the probability that $\frac{a+b}{c+d}$ is the average of $\frac{a}{c}$ and $\frac{b}{d}$? Express your answer as a fraction in simplest form.
Answer: $\frac{163}{648}$.
Solution: The average of $\frac{a}{c}$ and $\frac{b}{d}$ is

$$
\frac{1}{2}\left(\frac{a}{c}+\frac{b}{d}\right)=\frac{a d+b c}{2 c d}
$$

So for $\frac{a+b}{c+d}$ to equal this average means

$$
\frac{a+b}{c+d}=\frac{a d+b c}{2 c d}
$$

Clearing fractions gives

$$
2(a+b) c d=(a d+b c)(c+d)=a c d+a d^{2}+b c^{2}+b c d
$$

Putting all the terms on one side gives

$$
a d^{2}-a c d-b c d+b c^{2}=0
$$

Factoring gives

$$
(a d-b c)(d-c)=0
$$

All the steps above are reversible. So $\frac{a+b}{c+d}$ is the average of $\frac{a}{c}$ and $\frac{b}{d}$ if and only if $a d=b c$ or $c=d$.

AT Math Prize for Girls 2011 Solutions

Let's compute separately the probability that $a d=b c$ and the probability that $c=d$. First, the probability that $c=d$ is $\frac{1}{6}$.

Let's now compute the probability that $a d=b c$. The expression $a d$ has the possible values

$$
2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}, 2^{7}, 2^{8}, 2^{9}, 2^{10}, 2^{11}, 2^{12}
$$

with respective probabilities

$$
\frac{1}{36}, \frac{2}{36}, \frac{3}{36}, \frac{4}{36}, \frac{5}{36}, \frac{6}{36}, \frac{5}{36}, \frac{4}{36}, \frac{3}{36}, \frac{2}{36}, \frac{1}{36} .
$$

The same is true of the expression $b c$. So the probability that $a d=b c$ is

$$
\begin{aligned}
\operatorname{Pr}(a d=b c) & =\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+5^{2}+4^{2}+3^{2}+2^{2}+1^{2}}{36^{2}} \\
& =\frac{2\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}\right)+6^{2}}{1296} \\
& =\frac{2(1+4+9+16+25)+36}{1296} \\
& =\frac{2(55)+36}{1296} \\
& =\frac{146}{1296} \\
& =\frac{73}{648}
\end{aligned}
$$

To avoid double-counting, we also have to compute the probability that $a d=b c$ and $c=d$. The only way for that to happen is if $a=b$ and $c=d$. So the probability is $\frac{1}{6} \cdot \frac{1}{6}$, which is $\frac{1}{36}$.

By the Principle of Inclusion-Exclusion, the probability that $a d=b c$ or $c=d$ is

$$
\frac{73}{648}+\frac{1}{6}-\frac{1}{36}=\frac{73}{648}+\frac{108}{648}-\frac{18}{648}=\frac{73+108-18}{648}=\frac{163}{648}
$$

Problem 16 Let N be the number of ordered pairs of integers (x, y) such that

$$
4 x^{2}+9 y^{2} \leq 1000000000
$$

AT Math Prize for Girls 2011 Solutions

Let a be the first digit of N (from the left) and let b be the second digit of N. What is the value of $10 a+b$?
Answer: 52.
Solution: The value of N is the number of lattice points (points with integer coordinates) inside the ellipse $(2 x)^{2}+(3 y)^{2} \leq 1,000,000,000$. Imagine a unit square at the center of each such lattice point. Then N is the number of such unit squares. Equivalently, N is the area of the union of all such unit squares. The union of such unit squares is close in area to the ellipse. The area of the ellipse is $\frac{1,000,000,000}{6} \pi$, which is approximately

$$
\frac{1,000,000,000}{6}(3.1416)=\frac{3,141,600,000}{6}=523,600,000
$$

So N is approximately $523,600,000$. Assuming the approximation is close enough, that means a is 5 and b is 2 . So $10 a+b$ is 52 .

In the rest of the solution, we will prove that the approximation is close enough. Imagine stretching the entire picture by a factor of 2 in the x direction and by a factor of 3 in the y direction. The ellipse transforms into a circle with radius $\sqrt{10^{9}}$. Each unit square transforms into a 2-by3 rectangle. The union of these N rectangles has area $6 N$. In each such rectangle, the distance of every point in the rectangle to the center of the rectangle is at most

$$
\sqrt{1^{2}+\left(\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
$$

So the union of the rectangles is contained in a big circle of radius $\sqrt{10^{9}}+$ $\sqrt{\frac{13}{4}}$. Similarly, the union of the rectangles contains a small circle of radius $\sqrt{10^{9}}-\sqrt{\frac{13}{4}}$.

The area of the big circle is

$$
\pi\left(\sqrt{10^{9}}+\sqrt{\frac{13}{4}}\right)^{2}=\pi\left(10^{9}+10^{4} \sqrt{130}+\frac{13}{4}\right)<10^{9} \pi+4 \cdot 10^{4} \cdot 12+13<3,150,000
$$

The area of the small circle is

$$
\pi\left(\sqrt{10^{9}}-\sqrt{\frac{13}{4}}\right)^{2}=\pi\left(10^{9}-10^{4} \sqrt{130}+\frac{13}{4}\right)>10^{9} \pi-4 \cdot 10^{4} \cdot 12>3,120,000
$$

AT Math Prize for Girls 2011 Solutions

That means $6 N$, the area of the union of the rectangles, is between $3,120,000$ and $3,150,000$. So N itself is between 520,000 and 525,000 . Thus our approximation is close enough.

Problem 17 There is a polynomial P such that for every real number x,

$$
x^{512}+x^{256}+1=\left(x^{2}+x+1\right) P(x) .
$$

When P is written in standard polynomial form, how many of its coefficients are nonzero?

Answer: 341.
Solution: We can cleverly rewrite $x^{512}+x^{256}+1$ as follows:

$$
\begin{aligned}
x^{512}+x^{256}+1=\left(x^{512}\right. & \left.+x^{511}+\cdots+1\right) \\
& -\left(x^{511}+x^{510}+\cdots+x^{257}\right) \\
& -\left(x^{255}+x^{254}+\cdots+x\right) .
\end{aligned}
$$

Each of the three parenthesized polynomials is a multiple of $x^{2}+x+1$. For example,

$$
x^{512}+x^{511}+\cdots+1=\left(x^{2}+x+1\right)\left(x^{510}+x^{507}+\cdots+1\right) .
$$

(The exponents in the rightmost factor skip down by 3 . So that factor has 171 terms.) Similarly, we have

$$
x^{511}+x^{510}+\cdots+x^{257}=\left(x^{2}+x+1\right)\left(x^{509}+x^{506}+\cdots+x^{257}\right) .
$$

(The rightmost factor has 85 terms.) Finally, we have

$$
x^{255}+x^{254}+\cdots+x=\left(x^{2}+x+1\right)\left(x^{253}+x^{250}+\cdots+x\right) .
$$

(The rightmost factor has 85 terms.) By subtracting the last two equations from the equation before that, we get a factorization of $x^{512}+x^{256}+1$ as the product of $x^{2}+x+1$ and a polynomial with $171+85+85=341$ terms. The terms all have different exponents. So the answer to the problem is 341 .

Problem 18 The polynomial P is a quadratic with integer coefficients. For every positive integer n, the integers $P(n)$ and $P(P(n))$ are relatively prime to n. If $P(3)=89$, what is the value of $P(10)$?
Answer: 859.

AT Math Prize for Girls 2011 Solutions

Solution: Throughout we will use the fact that if $a \equiv b(\bmod n)$, then $P(a) \equiv P(b)(\bmod n)$.

First, we will determine $P(0)$. For every positive integer n, we have

$$
0 \equiv n \quad(\bmod n)
$$

Applying P on both sides, we have

$$
P(0) \equiv P(n) \quad(\bmod n)
$$

Because $P(n)$ and n are relatively prime, $P(0)$ and n are relatively prime. Since this is true for every positive integer n (and in particular, for every prime), $P(0)$ is either -1 or 1 . To determine which one, we work $\bmod 3$:

$$
P(0) \equiv P(3)=89 \equiv 2 \quad(\bmod 3)
$$

Hence $P(0)=-1$.
Next, we will determine $P(-1)$. Recall the equation

$$
P(0) \equiv P(n) \quad(\bmod n)
$$

Because $P(0)=-1$, we have

$$
-1 \equiv P(n) \quad(\bmod n)
$$

Applying P on both sides, we have

$$
P(-1) \equiv P(P(n)) \quad(\bmod n)
$$

Because $P(P(n))$ and n are relatively prime, $P(-1)$ and n are relatively prime. As before, $P(-1)$ must be either -1 or 1 . To determine which one, we use the fact that

$$
-1 \equiv 3 \quad(\bmod 4)
$$

Applying P on both sides, we get

$$
P(-1) \equiv P(3)=89 \equiv 1 \quad(\bmod 4)
$$

Hence $P(-1)$ is 1 .
We have discovered that $P(0)=-1, P(-1)=1$, and $P(3)=89$. There is a unique quadratic that satisfies all three equations. One way to find this quadratic is to write $P(x)$ as follows:

$$
P(x)=a+b x+c x(x+1) .
$$

AT Math Prize for Girls 2011 Solutions

Plugging in $x=0$, we find $a=-1$. Plugging in $x=-1$, we find $b=-2$. Plugging in $x=3$, we find $c=8$. So the polynomial P is

$$
P(x)=a+b x+c x(x+1)=-1-2 x+8 x(x+1)=8 x^{2}+6 x-1
$$

In particular, we have

$$
P(10)=8(10)^{2}+6(10)-1=800+60-1=859 .
$$

Problem 19 If $-1<x<1$ and $-1<y<1$, define the "relativistic sum" $x \oplus y$ to be

$$
x \oplus y=\frac{x+y}{1+x y} .
$$

The operation \oplus is commutative and associative. Let v be the number

$$
v=\frac{\sqrt[7]{17}-1}{\sqrt[7]{17}+1}
$$

What is the value of

$$
v \oplus v ?
$$

(In this expression, \oplus appears 13 times.) Express your answer as a fraction in simplest form.
Answer: $\frac{144}{145}$.
Solution: The number v is of the form $\frac{a-1}{a+1}$, where $a=\sqrt[7]{17}$. If b and c are positive numbers, then

$$
\begin{aligned}
\frac{b-1}{b+1} \oplus \frac{c-1}{c+1} & =\frac{\frac{b-1}{b+1}+\frac{c-1}{c+1}}{1+\frac{b-1}{b+1} \cdot \frac{c-1}{c+1}} \\
& =\frac{(b-1)(c+1)+(b+1)(c-1)}{(b+1)(c+1)+(b-1)(c-1)} \\
& =\frac{b c-c+b-1+b c+c-b-1}{b c+b+c+1+b c-b-c+1} \\
& =\frac{2 b c-2}{2 b c+2} \\
& =\frac{b c-1}{b c+1} .
\end{aligned}
$$

AT Math Prize for Girls 2011 Solutions

In other words, if we define $f(t)=\frac{t-1}{t+1}$ for any positive number t, then $f(b) \oplus f(c)=f(b c)$. We can extend this equation to more terms. For example, if b, c, and d are positive, then

$$
f(b) \oplus f(c) \oplus f(d)=f(b c) \oplus f(d)=f(b c d)
$$

(This reasoning also explains why \oplus is associative.) And so on.
Going back to our original problem, we have

$$
\begin{aligned}
\underbrace{v \oplus v \oplus \cdots \oplus v}_{14 \text { copies of } v} & =\underbrace{f(a) \oplus f(a) \oplus \cdots \oplus f(a)}_{14 \text { copies of } f(a)} \\
& =f(\underbrace{a \times a \times \cdots \times a}_{14 \text { copies of } a}) \\
& =f\left(a^{14}\right) \\
& =f\left(17^{2}\right) \\
& =f(289) \\
& =\frac{289-1}{289+1} \\
& =\frac{288}{290} \\
& =\frac{144}{145} .
\end{aligned}
$$

Note: Our "relativistic sum" definition was inspired by the addition law for velocities in special relativity.

Problem 20 Let $A B C$ be an equilateral triangle with each side of length 1. Let X be a point chosen uniformly at random on side $\overline{A B}$. Let Y be a point chosen uniformly at random on side $\overline{A C}$. (Points X and Y are chosen independently.) Let p be the probability that the distance $X Y$ is at most $\frac{1}{\sqrt[4]{3}}$. What is the value of $900 p$, rounded to the nearest integer?
Answer: 628.
Solution: Let $x=A X$ and $y=A Y$. By the Law of Cosines, the distance squared between X and Y is

$$
x^{2}+y^{2}-2 x y \cos 60^{\circ}=x^{2}+y^{2}-2 x y \cdot \frac{1}{2}=x^{2}+y^{2}-x y
$$

AT Math Prize for Girls 2011 Solutions

So $X Y \leq \frac{1}{\sqrt[4]{3}}$ is equivalent to

$$
x^{2}+y^{2}-x y \leq \frac{1}{\sqrt{3}}
$$

The graph of this inequality is an ellipse, whose axes are rotated 45° from the coordinate axes. If $X Y \leq \frac{1}{\sqrt[4]{3}}$, then $X Y<\frac{\sqrt{3}}{2}$, so X can't be the vertex C, which means that x can't be 1 . As a consequence, the ellipse doesn't intersect the line $x=1$. Similarly, the ellipse doesn't intersect the line $y=1$. So the portion of the ellipse in the first quadrant lies in the unit square. The area of that portion of the ellipse is the value of p.

The ellipse inequality

$$
x^{2}+y^{2}-x y \leq \frac{1}{\sqrt{3}}
$$

is equivalent to the inequality

$$
\left(\frac{x+y}{\sqrt{2}}\right)^{2}+3\left(\frac{x-y}{\sqrt{2}}\right)^{2} \leq \frac{2}{\sqrt{3}}
$$

Let's rotate the entire graph by 45° clockwise. Then the original ellipse transforms to the axes-parallel ellipse

$$
x^{2}+3 y^{2} \leq \frac{2}{\sqrt{3}}
$$

The boundary lines $x=0$ and $y=0$ transform to the lines $y=x$ and $y=-x$. Now let's transform the new ellipse to a circle by stretching the entire figure in the y direction by a factor of $\sqrt{3}$. The axes-parallel ellipse transforms to the circle

$$
x^{2}+y^{2} \leq \frac{2}{\sqrt{3}}
$$

The original boundary lines $y=x$ and $y=-x$ transform to the lines $y=\sqrt{3} x$ and $y=-\sqrt{3} x$. These new boundary lines form an angle of 120°. So the area of the circle sector inside the boundary lines is

$$
\frac{1}{3} \cdot \pi \cdot \frac{2}{\sqrt{3}}=\frac{2 \pi}{3 \sqrt{3}} .
$$

AT Math Prize for Girls 2011 Solutions

Because of the stretch, the area of the portion of the ellipse inside the boundary lines is

$$
\frac{1}{\sqrt{3}} \cdot \frac{2 \pi}{3 \sqrt{3}}=\frac{2 \pi}{9} .
$$

Thus $p=\frac{2 \pi}{9}$. Hence $900 p$ is 200π, which rounds to 628 .

