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Problem 1 Let A1A2 . . . An be a polygon (not necessarily regular) with
n sides. Suppose there is a translation that maps each point Ai to a point Bi

in the same plane. For convenience, define A0 = An and B0 = Bn. Prove
that

n∑
i=1

(Ai−1Bi)
2 =

n∑
i=1

(Bi−1Ai)
2 .

Solution: We will use vectors to solve this problem. By definition of trans-
lation, there is a vector v such that Bi = Ai + v for each i. Let’s analyze the
left-hand side of the desired equation:

n∑
i=1

(Ai−1Bi)
2 =

n∑
i=1

‖Bi − Ai−1‖2

=
n∑

i=1

‖Ai − Ai−1 + v‖2

=
n∑

i=1

(
‖Ai − Ai−1‖2 + 2(Ai − Ai−1) · v + ‖v‖2

)
=

n∑
i=1

‖Ai − Ai−1‖2 + 2v ·
n∑

i=1

(Ai − Ai−1) +
n∑

i=1

‖v‖2

=
n∑

i=1

(Ai−1Ai)
2 + 2v · 0 + n ‖v‖2

=
n∑

i=1

(Ai−1Ai)
2 + n ‖v‖2 .
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Similarly, let’s analyze the right-hand side of the desired equation:

n∑
i=1

(Bi−1Ai)
2 =

n∑
i=1

‖Ai −Bi−1‖2

=
n∑

i=1

‖Ai − Ai−1 − v‖2

=
n∑

i=1

(
‖Ai − Ai−1‖2 − 2(Ai − Ai−1) · v + ‖v‖2

)
=

n∑
i=1

‖Ai − Ai−1‖2 − 2v ·
n∑

i=1

(Ai − Ai−1) +
n∑

i=1

‖v‖2

=
n∑

i=1

(Ai−1Ai)
2 − 2v · 0 + n ‖v‖2

=
n∑

i=1

(Ai−1Ai)
2 + n ‖v‖2 .

We see that the left-hand side and right-hand side of the desired equation
are equal to the same expression, and so must equal each other.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 2 Let m and n be integers greater than 1. Prove that
⌊mn

6

⌋
non-

overlapping 2-by-3 rectangles can be placed in an m-by-n rectangle. Note:
bxc means the greatest integer that is less than or equal to x.

Solution: Say that (m,n) is good if we can pack bmn/6c disjoint 2-by-3
rectangles in an m-by-n rectangle. (In other words, the wasted space has
area less than 6.) Say that (m,n) is perfect if we can pack mn/6 disjoint
2-by-3 rectangles in an m-by-n rectangle. (In other words, there is no wasted
space.)

It’s easy to check that if m is even and n is a multiple of 3 (or vice versa),
then (m,n) is perfect.

In particular, (2, 6) and (3, 6) are perfect. Every integer m > 1 can be
written as the sum of 2’s and 3’s. So (m, 6) is always perfect.

Assume by strong induction that the result is true for every rectangle
with area less than mn. We will prove that (m,n) is good. Without loss of
generality, we may assume that m ≤ n.
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Suppose that n ≥ 8. Then (m, 6) is perfect and (m,n − 6) is good by
induction. So (m,n) is good.

Suppose that m is even and n ≥ 5. Then (m, 3) is perfect and (m,n− 3)
is good by induction. So (m,n) is good.

Suppose that m is a multiple of 3 and n ≥ 4. Then (m, 2) is perfect and
(m,n− 2) is good by induction. So (m,n) is good.

Only 9 cases remain: (2, 2), (2, 3), (2, 4), (3, 3), (4, 4), (5, 5), (5, 6), (5, 7),
and (7, 7). Each of these cases is straightforward to check, except perhaps
for (5, 5) and (7, 7). Below are good packings for (5, 5) and (7, 7).

Problem 3 Recall that the Fibonacci numbers are defined recursively by
the equation

Fn = Fn−1 + Fn−2

for every integer n ≥ 2, with initial values F0 = 0 and F1 = 1. Let k be
a positive integer. Say that an integer is k-summable if it is the sum of k
Fibonacci numbers (not necessarily distinct).

(a) Prove that every positive integer less than F2k+3 − 1 is k-summable.

(b) Prove that F2k+3 − 1 is not k-summable.

Solution:

(a) For every nonnegative integer k, we will prove that every nonnegative
integer less than F2k+3 − 1 is k-summable. The proof is by induction on k.
The base case k = 0 is trivial. Assume by induction that the result is true
for k − 1, where k ≥ 1. Let n be a nonnegative integer less than F2k+3 − 1.
We will show that n is k-summable.

Let j be the nonnegative integer such that Fj ≤ n < Fj+1. We will show
that n− Fj is less than F2k+1 − 1. If j ≥ 2k + 2, then

n− Fj ≤ n− F2k+2 < (F2k+3 − 1)− F2k+2 = F2k+1 − 1.
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On the other hand, if j ≤ 2k + 1, then

n− Fj < Fj+1 − Fj = Fj−1 ≤ F2k = F2k+1 − F2k−1 ≤ F2k+1 − 1.

Either way, n − Fj is less than F2k+1 − 1. By induction, n − Fj is (k − 1)-
summable. Because n is the sum of n − Fj and Fj, it follows that n is
k-summable. We have completed the proof by induction.

(b) Among all the representations of F2k+3 − 1 as the sum of Fibonacci
numbers, consider the one(s) with the fewest number of terms. Among these
representations, consider one with the smallest sum of Fibonacci indices.

We claim that this representation doesn’t contain two consecutive Fi-
bonacci numbers. That’s because Fj +Fj+1 could be replaced by Fj+2, which
reduces the number of terms.

We claim that this representation doesn’t contain the same term twice.
We could replace F0 + F0 by F0, which reduces the number of terms. We
could replace F1 + F1 by F3, which reduces the number of terms. For j ≥ 2,
we could replace Fj + Fj by Fj+1 + Fj−2. The number of terms has stayed
the same, and so has the sum of the terms, because

Fj + Fj = Fj + (Fj−1 + Fj−2) = Fj+1 + Fj−2 .

But the sum of the Fibonacci indices has gone down, because (j+1)+(j−2)
is less than j + j.

So this representation expresses F2k+3−1 as the sum of Fibonacci numbers
with distinct, non-consecutive indices. The largest term is at most F2k+2.
Because the indices are distinct and non-consecutive, the second largest term
is at most F2k. And so on. At this point, we will need the following sum of
even-indexed Fibonacci numbers:

F4 + F6 + · · ·+ F2k+2 = (F5 − F3) + (F7 − F5) + · · ·+ (F2k+3 − F2k+1)

= F2k+3 − F3

= F2k+3 − 2

< F2k+3 − 1.

The sum on the left has k terms. So the sum of the k largest terms in our
representation is less than F2k+3 − 1. Hence our representation of F2k+3 − 1
has more than k terms. Because our representation has the fewest number
of terms, every representation of F2k+3− 1 as the sum of Fibonacci numbers
has more than k terms. So F2k+3 − 1 is not k-summable.

Note: This problem was proposed by Oleg Kryzhanovsky.
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Problem 4 Let f be a function from the set of rational numbers to the set of
real numbers. Suppose that for all rational numbers r and s, the expression
f(r + s)− f(r)− f(s) is an integer. Prove that there is a positive integer q
and an integer p such that ∣∣∣f(1

q

)
− p
∣∣∣ ≤ 1

2012
.

Solution: We will use Dirichlet’s approximation theorem. For convenience,
we state and prove it below.

Theorem 1 (Dirichlet’s Approximation Theorem) If x is a real num-
ber, and n is a positive integer, then there are integers a and b such that
1 ≤ a ≤ n and

|ax− b| ≤ 1

n + 1
.

2

Proof We need to show that there is a positive integer a ≤ n such that ax
is within 1

n+1
of an integer. Divide the unit interval [0, 1) into n + 1 equal

intervals: [0, 1
n+1

), [ 1
n+1

, 2
n+1

), [ 2
n+1

, 3
n+1

), . . . , [ n
n+1

, 1). Consider the sequence
of numbers x, 2x, . . . , nx, modulo 1. If one of them (say ix mod 1) is in
either of the extreme intervals [0, 1

n+1
) or [ n

n+1
, 1), then we’re done (choose

a = i). Otherwise, we have n numbers in the n − 1 inner intervals. By the
Pigeonhole Principle, two of the numbers (say ix mod 1 and jx mod 1) are
in the same interval. Then |ix− jx| is less than 1

n+1
from an integer. By

choosing a = |i− j|, we’re done. �

Now back to the solution of the problem. Let N be a common multiple
of 1, 2, . . . , 2011. (For example, N = 2011!.) By Dirichlet’s approximation
theorem (with x = f(1/N) and n = 2011), there is a positive integer a ≤ 2011
and an integer b such that ∣∣∣af( 1

N

)
− b
∣∣∣ ≤ 1

2012
.

By the main condition of the problem, f(a/N) and af(1/N) differ by an
integer. So there is an integer p such that∣∣∣f( a

N

)
− p
∣∣∣ ≤ 1

2012
.
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Because N is a multiple of a, we can consider the integer q = N/a. Then∣∣∣f(1

q

)
− p
∣∣∣ ≤ 1

2012
.

So we’re done.
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