Math Prize for Girls Olympiad
 Wednesday, November 7, 2012
 Time Limit: 4 hours

1. Let $A_{1} A_{2} \ldots A_{n}$ be a polygon (not necessarily regular) with n sides. Suppose there is a translation that maps each point A_{i} to a point B_{i} in the same plane. For convenience, define $A_{0}=A_{n}$ and $B_{0}=B_{n}$. Prove that

$$
\sum_{i=1}^{n}\left(A_{i-1} B_{i}\right)^{2}=\sum_{i=1}^{n}\left(B_{i-1} A_{i}\right)^{2}
$$

2. Let m and n be integers greater than 1. Prove that $\left\lfloor\frac{m n}{6}\right\rfloor$ nonoverlapping 2-by-3 rectangles can be placed in an m-by- n rectangle. Note: $\lfloor x\rfloor$ means the greatest integer that is less than or equal to x.
3. Recall that the Fibonacci numbers are defined recursively by the equation

$$
F_{n}=F_{n-1}+F_{n-2}
$$

for every integer $n \geq 2$, with initial values $F_{0}=0$ and $F_{1}=1$. Let k be a positive integer. Say that an integer is k-summable if it is the sum of k Fibonacci numbers (not necessarily distinct).
(a) Prove that every positive integer less than $F_{2 k+3}-1$ is k-summable.
(b) Prove that $F_{2 k+3}-1$ is not k-summable.
4. Let f be a function from the set of rational numbers to the set of real numbers. Suppose that for all rational numbers r and s, the expression $f(r+s)-f(r)-f(s)$ is an integer. Prove that there is a positive integer q and an integer p such that

$$
\left|f\left(\frac{1}{q}\right)-p\right| \leq \frac{1}{2012} .
$$

