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Problem 1 Say that a convex quadrilateral is tasty if its two diagonals
divide the quadrilateral into four nonoverlapping similar triangles. Find all
tasty convex quadrilaterals. Justify your answer.

Solution: Let ABCD be a tasty quadrilateral. Let P be the point where
the diagonals AC and BD intersect. See the diagram below.

A

B

C

D

P

Consider the angle ∠APB. It is the sum of the two remote angles ∠PBC
and ∠PCB. So it is bigger than both remote angles. Because triangles APB
and BPC are similar (in some order), it follows that ∠APB = ∠BPC.
Because ∠APB and ∠BPC form a line, both are right angles. Similarly,
∠CPD and ∠DPA are right angles. So the diagonals AC and BD are
perpendicular.

Among the lengths AP , BP , CP , and DP , assume without loss of gen-
erality that AP is the smallest. By scaling, we may assume that AP = 1.
Let r = BP . Because AP is smallest, r ≥ 1. Because 4APB and 4DPA
are similar (in some order), DP is either r or 1/r. Because AP is smallest,
DP = r.

By SAS congruence, 4APB and 4APD are congruent, so AB = AD.
By SAS congruence, 4CPB and 4CPD are congruent, so CB = CD.
Hence ABCD is a kite.

Because triangles BPC and APB are similar (in some order), CP is
either 1 or r2.
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Let’s first handle the case CP = 1. Then the diagonals AC and BD are
perpendicular bisectors of each other. So ABCD is a rhombus.

Next, let’s handle the case CP = r2. Then 4APB and 4BPC are
similar (in that order), so ∠PAB = ∠PBC. Because ∠PBA and ∠PAB
are complements, so are ∠PBA and ∠PBC. Hence ∠ABC is a right angle.
Similarly, ∠ADC is a right angle. As we showed above, ABCD is a kite, so
ABCD is a right kite, a kite with right angles at two opposite angles. (A
right kite is the same as a cyclic kite.)

So every tasty quadrilateral is a rhombus or a right kite. We will now
show the converse: every rhombus or right kite is tasty.

Consider a rhombus. Its sides are of equal length. Because it is a parallel-
ogram, its diagonals bisect each other. So, by SSS congruence, its diagonals
divide it into four congruent triangles. Hence every rhombus is tasty.

Next consider a right kite. One diagonal divides the kite into two congru-
ent right triangles. The other diagonal divides each of these right triangles
into two similar triangles. (In a right triangle, the altitude to the hypotenuse
divides the triangle into two similar triangles.) So the two diagonals divide
the kite into four similar triangles. Hence every right kite is tasty.

We have showed that a convex quadrilateral is tasty if and only if it is a
rhombus or a right kite. In other words, the set of tasty quadrilaterals is the
union of the set of rhombuses and the set of right kites.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 2 Let f be the function defined by f(x) = 4x(1− x). Let n be a
positive integer. Prove that there exist distinct real numbers x1, x2, . . . , xn
such that xi+1 = f(xi) for each integer i with 1 ≤ i ≤ n − 1, and such that
x1 = f(xn).

Solution: Given an angle θ, note that

f(sin2 θ) = 4 sin2 θ(1− sin2 θ) = 4 sin2 θ cos2 θ = (2 sin θ cos θ)2 = sin2 2θ.

With that identity in mind, let

xi = sin2(2i−1α),

where α is an angle to be specified later. Note that

xi+1 = sin2(2iα) = sin2(2 · 2i−1α) = f(sin2(2i−1α)) = f(xi),
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as desired. With foresight, let’s choose

α =
π

2n + 1
.

We have

x1 = sin2 α = sin2(π − α) = sin2(2nα) = xn+1 = f(xn),

as desired.
We need to show that x1, . . . , xn are distinct real numbers. Because

0 < α < π
2n

, we have

0 < α < 2α < 22α < · · · < 2n−1α <
π

2
.

Because sin (and hence sin2) is strictly increasing on the interval [0, π
2
], we

have
x1 < x2 < · · · < xn.

Hence x1, . . . , xn are distinct.
Alternative Solution (sketch): The case n = 1 is trivial, so assume

that n ≥ 2. Let f i be the ith iterate of f . Let b be the smallest positive
number such that fn(b) = 0; it’s easy to see that fn−1(b) = 1 and fn−2(b) =
1
2
. Let a be the smallest positive number such that fn(a) = a; it’s not hard

to show that a < b. Because fn−2(b) = 1
2
, it follows that f i(a) ≤ 1

2
for all

i ≤ n − 2. Note that f(x) > x for all 0 < x < 3
4
. So a < f(a) < f 2(a) <

· · · < fn−1(a). Let xi = f i−1(a). Then x1 < x2 < · · · < xn. So the xi are
distinct real numbers that satisfy the conditions of the problem.

Problem 3 Say that a positive integer is sweet if it uses only the digits 0,
1, 2, 4, and 8. For instance, 2014 is sweet. There are sweet integers whose
squares are sweet: some examples (not necessarily the smallest) are 1, 2, 11,
12, 20, 100, 202, and 210. There are sweet integers whose cubes are sweet:
some examples (not necessarily the smallest) are 1, 2, 10, 20, 200, 202, 281,
and 2424. Prove that there exists a sweet positive integer n whose square
and cube are both sweet, such that the sum of all the digits of n is 2014.

Solution: We will define n to be

n = 2
1007∑
i=1

100ai ,
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where a1, a2, . . . , a1007 are distinct nonnegative integers to be chosen later.
Because the ai are distinct, n uses only the digits 0 and 2. So n is sweet.
The number of 2’s in n is 1007, so the digit sum of n is 2014, as desired.

We now consider n2. We need to square a sum:

(
∑
i

xi)
2 =

∑
i,j

xixj =
∑
i

x2i + 2
∑
i<j

xixj .

Hence n2 is
n2 = 4

∑
i

1002ai + 8
∑
i<j

100ai+aj .

We will choose the ai so that ai + aj is different for each pair i ≤ j. In that
case, n2 uses only the digits 0, 4, and 8. So n2 is sweet.

We now consider n3. We need to cube a sum:

(
∑
i

xi)
3 =

∑
i,j,k

xixjxk =
∑
i

x3i + 3
∑
i 6=j

x2ixj + 6
∑
i<j<k

xixjxk .

Hence n3 is

n3 = 8
∑
i

1003ai + 24
∑
i 6=j

1002ai+aj + 48
∑
i<j<k

100ai+aj+ak .

We will choose the ai so that ai+aj+ak is different for each i ≤ j ≤ k. In that
case, n3 uses only the digits 0, 2, 4, and 8. (The two-digit coefficients such as
24 and 48 won’t overlap with other coefficients because we used base 100.)
So n3 is sweet.

We now choose the ai to satisfy the distinctness conditions above. We
can set ai = 4i for all i. This choice works because the base-4 representation
of an integer is unique, and a sum such as ai + aj or ai + aj + ak has at most
3 occurrences of the same power of 4. Alternatively, we could bound ai by a
polynomial (of degree 5) in i by using a greedy approach: choose a1, a2, . . . ,
in that order by setting each ai to the smallest nonnegative integer consistent
with the previous choices.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 4 Let n be a positive integer. A 4-by-n rectangle is divided into
4n unit squares in the usual way. Each unit square is colored black or white.
Suppose that every white unit square shares an edge with at least one black
unit square. Prove that there are at least n black unit squares.
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Solution: The 4-by-n rectangle consists of n columns, each with 4 unit
squares. If some column is all white, then (to touch its white squares) its
neighboring columns must have at least 4 black squares in all. In particular,
for each all-white column, either its left neighbor has at least 3 black squares
or its right neighbor has at least 2 black squares (or both).

We need to prove that there are at least n black squares. To do so, we will
move the black squares around so that there is at least one black square in
each column. (Such movements might destroy the property that each white
square is next to a black square, but that’s okay. All that matters is that the
number of black squares stays the same.)

Each all-white column will take a black square from its left neighbor
(provided this neighbor started with at least 3 black squares); otherwise it
will take a black square from its right neighbor (which started with at least
2 black squares).

The claim is that each column now has at least one black square. If a
column started with 0 black squares, then it took a black square from one
of its neighbors. If a column started with 1 black square, then it kept its
black square. If a column started with 2 black squares, then it may have
given 1 black square to its left neighbor, but it will still have at least 1 black
square. If a column started with 3 or 4 black squares, then it may have given
1 black square each to its left and right neighbors, but it will still have at
least 1 black square. So every column has at least 1 black square after the
movements.

Because each column ends with at least 1 black square, the number of
black squares at the end is at least n. But the number of black squares never
changed. So the original coloring has at least n black squares.
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