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Problem 1 The four congruent circles below touch one another and each
has radius 1.

What is the area of the shaded region? Express your answer in terms of π.
Answer: 4− π or −π + 4

Solution: Join the centers of the 4 circles as in the figure below.

The centers of the circles are the vertices of a square. The square has
side length 1 + 1 = 2. So the square has area 22 = 4. The unshaded portion
of the square consists of 4 quarter circles, each of radius 1. These 4 quarter
circles form a whole circle of radius 1. So the unshaded portion of the square
has area π. Hence the shaded region has area 4− π .
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Problem 2 Let x1, x2, . . . , x10 be 10 numbers. Suppose that xi+ 2xi+1 = 1
for each i from 1 through 9. What is the value of x1 + 512x10?
Answer: 171

Solution: To simplify the given equation xi + 2xi+1 = 1, let yi = xi − 1
3
.

Then the equation becomes yi + 2yi+1 = 0, or yi = −2yi+1. Unwinding, we
get

y1 = −2y2 = (−2)2y3 = (−2)3y4 = · · · = (−2)9y10 = −512y10.

So y1 + 512y10 = 0. Going back to xi, we get

x1 + 512x10 =
(
y1 +

1

3

)
+ 512

(
y10 +

1

3

)
=
(
y1 + 512y10

)
+

1

3
+

512

3
= 171 .

Problem 3 Four different positive integers less than 10 are chosen randomly.
What is the probability that their sum is odd? Express your answer as a
fraction in simplest form.

Answer:
10

21

Solution: We are choosing 4 integers from 1 to 9. The number of ways of
doing so is (

9

4

)
=

9 · 8 · 7 · 6
24

= 9 · 7 · 2 = 126.

To make the sum of the 4 integers odd, we will choose either 3 odd and 1
even (case 1) or 1 odd and 3 even (case 2). The number of ways to satisfy
case 1 is (

5

3

)(
4

1

)
= 10 · 4 = 40.

The number of ways to satisfy case 2 is(
5

1

)(
4

3

)
= 5 · 4 = 20.

So the total number of successful choices is 40 + 20 = 60. Hence the proba-
bility of success is

60

126
=

30

63
=

10

21
.
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Problem 4 Say that an integer A is yummy if there exist several consecutive
integers (including A) that add up to 2014. What is the smallest yummy
integer?
Answer: −2013

Solution: Here is a sequence of consecutive integers that add up to 2014:

−2013,−2012, . . . ,−1, 0, 1, . . . , 2012, 2013, 2014.

So −2013 is yummy.
Assume there is a yummy integer less than −2013. Then there is a

sequence of consecutive integers (including at least one less than −2013) that
add up to 2014. Let A be the least integer in the sequence, so A < −2013.
Because the sum of the sequence is nonnegative, it includes the numbers

A, . . . ,−1, 0, 1, . . . ,−A.

Because the sum of the sequence is positive, besides the numbers above, it
includes −A+ 1. But

−A+ 1 > 2013 + 1 = 2014.

So the sum of the sequence exceeds 2014, which is a contradiction. Hence
there is no yummy integer less than −2013.

Therefore the least yummy integer is −2013 .
Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 5 Say that an integer n ≥ 2 is delicious if there exist n positive
integers adding up to 2014 that have distinct remainders when divided by n.
What is the smallest delicious integer?
Answer: 4

Solution: Is 2 delicious? The two remainders mod 2 are 0 and 1. Their sum
is 1 mod 2. But 2014 isn’t 1 mod 2. So 2 isn’t delicious.

Is 3 delicious? The three remainders mod 3 are 0, 1, and 2. Their sum is
0 mod 3. But 2014 isn’t 0 mod 3. So 3 isn’t delicious.

Is 4 delicious? The four remainders mod 4 are 0, 1, 2, and 3. Their sum
is 2 mod 4. Now 2014 is 2 mod 4, so we haven’t ruled out 4 being delicious.
Consider the 4 integers 1, 2, 3, and 2008. These 4 integers are positive, add
to 2014, and have distinct remainders mod 4. So 4 is indeed delicious.

Note: This problem was proposed by Oleg Kryzhanovsky.
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Problem 6 There are N students in a class. Each possible nonempty group
of students selected a positive integer. All of these integers are distinct and
add up to 2014. Compute the greatest possible value of N .
Answer: 5

Solution: The number of nonempty groups of N students is 2N − 1. So
we have 2N − 1 distinct positive integers that add up to 2014. The sum of
2N −1 distinct positive integers is at least the sum of the first 2N −1 positive
integers, which is

(2N − 1)2N

2
= (2N − 1)2N−1.

So we have the inequality

(2N − 1)2N−1 ≤ 2014.

If N ≥ 6, then

(2N − 1)2N−1 ≥ (26 − 1)25 = 63(32) = 2016 > 2014.

So N ≤ 5.
Let’s check that we can achieve N = 5. In that case, 2N − 1 = 31. Can

we find 31 distinct positive integers that add up to 2014? Let’s choose 30 of
the integers to be 1, 2, 3, . . . , 30. Their sum is

30(31)

2
= 15(31) = 465.

So the 31st number should be 2014 − 465, which is 1549. Because 1549 is
distinct from 1 through 30, we have indeed found 31 distinct positive integers
that add up to 2014. So N = 5 is possible.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 7 If x is a real number and k is a nonnegative integer, recall that
the binomial coefficient

(
x
k

)
is defined by the formula(

x

k

)
=
x(x− 1)(x− 2) . . . (x− k + 1)

k!
.

Compute the value of (
1/2
2014

)
· 42014(

4028
2014

) .
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Express your answer as a fraction in simplest form.

Answer:
−1

4027
or − 1

4027

Solution: Let k = 2014. Then(
1/2

k

)
=

(1/2)(1/2− 1)(1/2− 2) . . . (1/2− k + 1)

k!

=
(1)(1− 2)(1− 4) . . . (1− 2(k − 1))

k! 2k

= (−1)k−1
(2− 1)(4− 1) . . . (2(k − 1)− 1)

k! 2k

= (−1)k−1
1 · 3 · 5 . . . (2k − 3)

k! 2k

= (−1)k−1
2 · 4 · 6 . . . (2k − 2)

2 · 4 · 6 . . . (2k − 2)
· 1 · 3 · 5 . . . (2k − 3)

k! 2k

= (−1)k−1
(2k − 2)!

(k − 1)! 2k−1k! 2k

= 2(−1)k−1
(2k − 2)!

(k − 1)! k! 4k
.

Also (
2k

k

)
=

(2k)!

k! k!
.

Dividing the first equation by the second gives(
1/2
k

)
· 4k(

2k
k

) = 2(−1)k−1
(2k−2)!
(k−1)! k!
(2k)!
k! k!

= 2(−1)k−1
(2k − 2)!

(2k)!
· k!

(k − 1)!

= 2(−1)k−1
k

(2k − 1)(2k)

= (−1)k−1
1

2k − 1
.

Because k = 2014, we have(
1/2
k

)
· 4k(

2k
k

) = (−1)2014−1
1

2(2014)− 1
=
−1

4027
.
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Problem 8 A triangle has sides of length
√

13,
√

17, and 2
√

5. Compute
the area of the triangle.
Answer: 7

Solution: Let a =
√

13, b =
√

17, and c = 2
√

5. Heron’s formula says that
the area K of the triangle is

K =
√
s(s− a)(s− b)(s− c) ,

where s is the semiperimeter (a+ b+ c)/2. Replacing s in Heron’s formula,
we get

K =
1

4

√
(a+ b+ c)(b+ c− a)(a+ c− b)(a+ b− c) .

The first two factors in the square root multiply to

(a+ b+ c)(b+ c− a) = (b+ c)2 − a2 = 2bc+ b2 + c2 − a2.

The last two factors in the square root multiply to

(a+ c− b)(a+ b− c) = a2 − (b− c)2 = 2bc− (b2 + c2 − a2).

Hence the product of all four factors is

(2bc)2 − (b2 + c2 − a2)2 = 4b2c2 − (b2 + c2 − a2)2.

So Heron’s formula becomes

K =
1

4

√
4b2c2 − (b2 + c2 − a2)2 .

Let’s plug in the particular values of a, b, and c. We have a2 = 13, b2 = 17,
and c2 = 20. So

b2 + c2 − a2 = 17 + 20− 13 = 24.

Hence the area of the triangle is

K =
1

4

√
4(17)(20)− 242 =

√
17(5)− 62 =

√
85− 36 =

√
49 = 7 .

Alternative Solution: Consider the triangle whose vertices are at (0, 0),
(−2, 3), and (2, 4). Its sides have the desired lengths

√
13,
√

17, and 2
√

5.
We can find the area of the triangle from its coordinates in lots of ways. For
example, we can apply the shoelace formula or Pick’s theorem, or bound the
triangle by a 4-by-4 square.

Note: This problem was proposed by Oleg Kryzhanovsky.
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Problem 9 Let abc be a three-digit prime number whose digits satisfy a <
b < c. The difference between every two of the digits is a prime number too.
What is the sum of all the possible values of the three-digit number abc?
Answer: 736

Solution: The differences b − a, c − b, and c − a are prime numbers less
than 9, that is 2, 3, 5, or 7. Because c− a is the sum of b− a and c− b, two
of the prime differences add up to a third prime. The only possibilities are
2 + 5 (or 5 + 2) and 2 + 3 (or 3 + 2).

Assume that b− a is 2 and c− b is 5. Then c− a is 7. So abc is aaa+ 27,
a multiple of 3. But that contradicts abc being prime.

A similar analysis rules out the case when b− a is 5 and c− b is 2.
Assume that b−a is 2 and c− b is 3. The candidates for abc are 136, 247,

358, and 469. But 136 and 358 are even, 247 is a multiple of 13, and 469 is
a multiple of 7. So none of these candidates is prime.

Assume that b − a is 3 and c − b is 2. The candidates for abc are 146,
257, 368, and 479. But 146 and 368 are even and hence not prime. On the
other hand, 257 and 479 are prime.

In the summary, the possible values of abc are 257 and 479. Their sum
is 736 .

Problem 10 An ant is on one face of a cube. At every step, the ant walks to
one of its four neighboring faces with equal probability. What is the expected
(average) number of steps for it to reach the face opposite its starting face?
Answer: 6

Solution: Let A, B, C, D, E, and F be the faces of the cube, with A the
starting face. Suppose that A and F are opposite, B and E are opposite, and
C and D are opposite. Let a be the number we are looking for, the expected
number of steps from A to F . Let b be the expected number of steps from B
to F . By symmetry, b is also the expected number of steps from C (or D or
E) to F .

Starting from A, after 1 step, the ant will be at B or C or D or E. So
a = 1 + b.

From B, after 1 step, the ant will be at A with probability 1
4
, at C or D

with combined probability 1
2
, and at F with probability 1

4
. So b = 1+ 1

4
a+ 1

2
b.

Simplifying gives a = 2b − 4. Because a = 1 + b, we get the equation
2b− 4 = 1 + b. So b = 5. Hence a = 1 + b = 1 + 5 = 6 .
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Problem 11 Let R be the set of points (x, y) such that bx2c = byc and
by2c = bxc. Compute the area of region R. Express your answer in the form
a − b

√
c, where a and b are positive integers and c is a square-free positive

integer. Recall that bzc is the greatest integer that is less than or equal to z.
Answer: 4− 2

√
2

Solution: Let (x, y) be a point in R. Because squares are nonnegative, we
have

bxc = by2c ≥ 0.

So x ≥ 0. Similarly, y ≥ 0.
Let m = bxc and n = byc. By the previous paragraph, m ≥ 0 and n ≥ 0.

Because x ≥ m, we have x2 ≥ m2. So

n = byc = bx2c ≥ m2.

Similarly, we have m ≥ n2.
Because n ≥ m2 and m ≥ n2, we have

n ≥ m2 ≥ (n2)2 = n4.

Because n is an integer such that n ≥ n4, it follows that n is 0 or 1. Similarly,
m is 0 or 1. To make n ≥ m2 and m ≥ n2 both true, either m = n = 0 or
m = n = 1.

First, let’s handle the case m = n = 0. In that case, 0 ≤ x < 1 and
0 ≤ y < 1. So 0 ≤ x2 < 1 and 0 ≤ y2 < 1. As a result, the equations
bx2c = byc and by2c = bxc are automatically satisfied. So the entire unit
square [ 0, 1)× [ 0, 1) is in R.

Next, let’s handle the case m = n = 1. Then bx2c = byc = n = 1; so
1 ≤ x2 < 2, which means that 1 ≤ x <

√
2. Similarly, 1 ≤ y <

√
2. So the

square [ 1,
√

2 )× [ 1,
√

2 ) is in R.
Combining the two previous paragraphs, we see that region R is the

disjoint union of the squares [ 0, 1)× [ 0, 1) and [ 1,
√

2 )× [ 1,
√

2 ). The first
square has area 1. The second square has area

(
√

2− 1)2 = 3− 2
√

2.

So the total area of R is

1 + (3− 2
√

2) = 4− 2
√

2 .

Note: This problem was proposed by Oleg Kryzhanovsky.
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Problem 12 Let B be a 1× 2× 4 box (rectangular parallelepiped). Let R
be the set of points that are within distance 3 of some point in B. (Note
that R contains B.) What is the volume of R? Express your answer in terms
of π.
Answer: 99π + 92 or 92 + 99π

Solution: Call the dimensions of the box a = 1, b = 2, and c = 4. Let r = 3
be the distance threshold.

The volume of B itself is abc.
Consider one of the faces of B, say one of dimension a by b. Then part

of R is a box of dimension a by b by r on that face. The volume of that box
is abr. By considering each of the 6 faces of B, we get 6 boxes in R with
total volume 2r(ab+ ac+ bc).

Consider one of the edges of B, say one of length a. Then part of R is a
quarter cylinder of height a and radius r whose axis is that edge. The volume
of that quarter cylinder is 1

4
r2a. By considering each of the 12 edges of B,

we get 12 quarter cylinders in R with total volume πr2(a+ b+ c).
Finally, consider one of the vertices of B. Then part of R is one-eighth of

a ball of radius r whose center is that vertex. The volume of that eighth of
a ball is 1

8
· 4
3
πr2. By considering each of the 8 vertices of B, we get 8 eighth

balls in R with total volume 4
3
πr3.

The region R is the disjoint union of the parts we have listed in the last
four paragraphs. So the volume of R is

abc+ 2r(ab+ ac+ bc) + πr2(a+ b+ c) +
4

3
πr3.

Plugging in a = 1, b = 2, c = 4, and r = 3, we find the volume of R to be

1(2)(4) + 2(3)(2 + 4 + 8) + π(32)(1 + 2 + 4) +
4

3
π(33) = 92 + 99π .

Problem 13 Deepali has a bag containing 10 red marbles and 10 blue mar-
bles (and nothing else). She removes a random marble from the bag. She
keeps doing so until all of the marbles remaining in the bag have the same
color. Compute the probability that Deepali ends with exactly 3 marbles
remaining in the bag. Express your answer as a fraction in simplest form.

Answer:
40

323

9
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Solution: We’ll first compute the probability that Deepali ends with exactly
3 red marbles remaining. We’ll then double that probability to account for
her possibly ending with 3 blue marbles instead.

Even though Deepali is supposed to stop once all the remaining marbles
have the same color, let’s imagine that she continues until she has removed
all 20 marbles. For Deepali to end with exactly 3 red marbles in the original
game, her final final four marbles in the extended game have to be BRRR
(blue, red, red, red). Let’s analyze the probability of finishing with BRRR,
starting from the end. The probability that the final marble is red is 10

20
,

or 1
2
. Given that the final marble is red, the probability that the second-

to-last marble is red is 9
19

. Given that the final two marbles are red, the
probability that the third-to-last marble is red is 8

18
, or 4

9
. Given that the

final three marbles are red, the probability that the fourth-to-last marble is
blue is 10

17
. So the probability that the final four marbles are BRRR is

1

2
· 9

19
· 4

9
· 10

17
=

20

19 · 17
=

20

323
.

That’s the probability of ending with exactly 3 red marbles in the original
game. So the probability of ending with 3 marbles (of either color) in the

original game is twice that, or
40

323
.

Problem 14 A triangle has area 114 and sides of integer length. What is
the perimeter of the triangle?
Answer: 76

Solution: Let a, b, and c be the side lengths of the triangle. Let s be its
semiperimeter (a+ b+ c)/2. By Heron’s formula, we get the equation√

s(s− a)(s− b)(s− c) = 114.

Squaring, we get
s(s− a)(s− b)(s− c) = 1142.

Because the side lengths are integers, the semiperimeter s is either an
integer or a half integer (half an odd integer). If s were a half integer, then
s− a, s− b, and s− c would be too; but then s(s− a)(s− b)(s− c) couldn’t
be an integer. So s is an integer.

10
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Let x = s− a, y = s− b, and z = s− c. Their sum is

x+ y + z = (s− a) + (s− b) + (s− c) = 3s− (a+ b+ c) = 3s− 2s = s.

So our main equation becomes

sxyz = 1142,

where x, y, and z add up to s.
To proceed further, we will prime factorize: 114 = 2 · 3 · 19. So 1142 =

22 · 32 · 192. Our main equation becomes

sxyz = 22 · 32 · 192.

We claim that s is a multiple of 19. Assume not. Then s is a factor of
22 · 32 = 36, and in particular is at most 36. In contrast, either two of x,
y, and z are multiples of 19 or one of them is a multiple of 192; either way,
their sum is at least 38. But that contradicts s being their sum. So s is a
multiple of 19.

We claim that x, y, or z is a multiple of 19. Assume not. Then each
of them is a factor of 22 · 32 = 36, and in particular each is at most 36.
In contrast, s is a multiple of 192 = 361, and so is at least 361. But that
contradicts s being the sum of x, y, and z. So x, y, or z is a multiple of 19.

By the two preceding paragraphs, we know that s is a multiple of 19 and
so is x, y, or z. Without loss of generality, assume that x is a multiple of 19.
Then y+ z = s− x is a multiple of 19 too. And yz is a factor of 22 · 32 = 36.
The only possibility is for y and z to be 1 and 18 (in some order). That
means sx = 2 ·192. So x = 19 and s = 2 ·19 = 38. Since the semiperimeter s
is 38, the perimeter is 76 .

Problem 15 There are two math exams called A and B. 2014 students took
the A exam and/or the B exam. Each student took one or both exams, so
the total number of exam papers was between 2014 and 4028, inclusive. The
score for each exam is an integer from 0 through 40. The average score of all
the exam papers was 20. The grade for a student is the best score from one
or both exams that she took. The average grade of all 2014 students was 14.
Let G be the greatest possible number of students who took both exams. Let
L be the least possible number of students who took both exams. Compute
G− L.
Answer: 200

11
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Solution: Because the average grade of all 2014 students is 14, the sum of
all 2014 student grades is 14(2014).

Let n be the number of students who took both exams. Then the number
of students who took only one exam is 2014 − n. So the total number of
exam papers is

2(n) + 1(2014− n) = n+ 2014.

Because the average score of all n + 2014 exam papers is 20, the sum of all
exam scores is 20(n+ 2014).

What is the difference between the sum of all exam scores and the sum
of all student grades? The first sum includes the lower score for each of the
n students who took both exams. Because each score is at most 40, the first
sum is at most 40n more than the second sum. By our previous work, we
get the inequality

20(n+ 2014) ≤ 14(2014) + 40n.

Solving for n gives

n ≥ 6(2014)

20
=

3(2014)

10
= 604.2.

So n ≥ 605.
Let’s check that n = 605 is achievable. The inequalities in the previous

paragraph are nearly sharp when the lower scores for the n students who
took both exams are nearly 40. With that in mind, here is one scenario for
achieving 605. Suppose that 604 students score 40 and 40, 1 student scores
25 and 24, 1337 (leet!) students score 3, and 72 students score 0. So L, the
least possible value of n, is 605.

We will now compute an upper bound on n. Again we will compare the
sum of all exam scores and the sum of all student grades. We claim that
the first sum is at most double the second sum. That’s because for each
student who took both exams, the first sum includes her lower and upper
score, whereas double the second sum includes her upper score twice; also,
for each student who took only one exam, the first sum includes her score
once, whereas double the second sum includes her score twice. By our work
in the first two paragraphs, we get the inequality

20(n+ 2014) ≤ 2 · 14(2014).

12
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Solving for n gives

n ≤ 8(2014)

20
=

4(2014)

10
= 805.6.

So n ≤ 805.
Let’s show that n = 805 is achievable. The inequalities in the previous

paragraph are nearly sharp when the lower and upper scores for the n stu-
dents who took both exams are nearly equal, and the scores for the 2014−n
students who took only one exam are nearly 0. With that in mind, here is
one scenario for achieving 805. Suppose that 802 students score 35 and 35,
3 students score 38 and 38, 1208 students score 0, and 1 student scores 12.
So G, the greatest possible value of n, is 805.

Hence G− L, the desired quantity, is 805− 605 = 200 .
Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 16 If sin x + sin y = 96
65

and cos x + cos y = 72
65

, then what is the
value of tanx+ tan y? Express your answer as a fraction in simplest form.

Answer:
507

112

Solution: Recall the sum-to-product identities

sinx+ sin y = 2 sin
x+ y

2
cos

x− y
2

cosx+ cos y = 2 cos
x+ y

2
cos

x− y
2

.

So our given equations become

2 sin
x+ y

2
cos

x− y
2

=
96

65

2 cos
x+ y

2
cos

x− y
2

=
72

65
.

To simplify these equations, let a = x+y
2

and b = x−y
2

. Then the equations
become

2 sin a cos b =
96

65

2 cos a cos b =
72

65
.

13



Math Prize for Girls 2014 Solutions

Dividing by 2 gives

sin a cos b =
48

65

cos a cos b =
36

65
.

In this last pair of equations, if we divide the first equation by the second,
we get

tan a =
48

36
=

4

3
.

On the other hand, if we square both equations and add, we get

cos2 b =
(48

65

)2
+
(36

65

)2
=
(12

13

)2
.

Hence we have

tan2 b = sec2 b− 1 =
(13

12

)2 − 1 =
( 5

12

)2
.

So tan b = ± 5
12

.
At first, we will assume that tan b = 5

12
. Later we will handle the opposite

case.
Because a = x+y

2
and b = x−y

2
, we have x = a + b and y = a− b. By the

tangent sum formula, we have

tanx = tan(a+ b) =
tan a+ tan b

1− tan a tan b
=

4/3 + 5/12

1− (4/3)(5/12)
=

63

16
.

Similarly, by the tangent difference formula, we have

tan y = tan(a− b) =
tan a− tan b

1 + tan a tan b
=

4/3− 5/12

1 + (4/3)(5/12)
=

33

56
.

The previous paragraph assumed that tan b = 5
12

. If tan b were − 5
12

, then
the calculation would be similar, except that the values of tan x and tan y
would be switched. Either way, their sum is

tanx+ tan y =
63

16
+

33

56
=

441

112
+

66

112
=

507

112
.
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Problem 17 Let ABC be a triangle. Points D, E, and F are respectively
on the sides BC, CA, and AB of 4ABC. Suppose that

AE

AC
=
CD

CB
=
BF

BA
= x

for some x with 1
2
< x < 1. Segments AD, BE, and CF cut the triangle

into 7 nonoverlapping regions: 4 triangles and 3 quadrilaterals. The total
area of the 4 triangles equals the total area of the 3 quadrilaterals. Compute
the value of x. Express your answer in the form k−

√
m

n
, where k and n are

positive integers and m is a square-free positive integer.

Answer:
11−

√
37

6

Solution: Below is a diagram of the situation.

A

B

C

D

E

F

P

Q
R

Let r = BF
FA

. Because BF
BA

= x, we have r = x
1−x . Because 1

2
< x < 1,

we have r > 1. The barycentric coordinates of F are r : 1 : 0. Similarly,
D = 0 : r : 1 and E = 1 : 0 : r.

Let P be the intersection point of BE and CF , let Q be the intersection
point of AD and CF , and let R be the intersection point of AD and BE.
Because P lies on BE, the ratio of its C-coordinate to A-coordinate is r.
Because P lies on CF , the ratio of its A-coordinate to B-coordinate is also r.
So the barycentric coordinates of P are r : 1 : r2. Similarly, Q = r2 : r : 1
and R = 1 : r2 : r.

By scaling, we may assume that the area of 4ABC is 1. Recall that
barycentric coordinates are also areal coordinates. Because D = 0 : r : 1, the
area of 4ABD is 1

r+1
. Similarly, 4BCE and 4CAF each have the same

area 1
r+1

.
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Because P = r : 1 : r2, the area of 4BCP is r
r2+r+1

. Similarly, 4AQC
and 4ABR each have the same area r

r2+r+1
.

Because the area of 4CAF is 1
1+r

and the area of 4AQC is r
r2+r+1

, the
area of 4AQF is their difference

1

1 + r
− r

r2 + r + 1
=

1

(r + 1)(r2 + r + 1)
.

Similarly, 4BDR and 4CEP each have the same area.
Quadrilateral CPRD is 4BCE minus 4DBR and 4CPE, so the area

of CPRD is

1

r + 1
− 2

(r + 1)(r2 + r + 1)
=

r2 + r − 1

(r + 1)(r2 + r + 1)
.

Similarly, the quadrilaterals BRQF and AQPE each have the same area.
The problem says that the total area of the three quadrilaterals is half

the area of 4ABC. So we get the equation

3
r2 + r − 1

(r + 1)(r2 + r + 1)
=

1

2
.

Clearing fractions and bringing all terms to one side gives

r3 − 4r2 − 4r + 7 = 0.

Factoring gives
(r − 1)(r2 − 3r − 7) = 0.

Because r > 1, we have
r2 − 3r − 7 = 0.

By the quadratic formula,

r =
3±
√

37

2
.

Because r > 1, we have

r =

√
37 + 3

2
.

Recall that r = x
1−x . Solving for x gives x = 1− 1

r+1
. Hence

x = 1− 2√
37 + 5

= 1− 2(
√

37− 5)

37− 52
=

11−
√

37

6
.

Note: This problem was proposed by Oleg Kryzhanovsky.
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Problem 18 For how many integers k such that 0 ≤ k ≤ 2014 is it true
that the binomial coefficient

(
2014
k

)
is a multiple of 4?

Answer: 991

Solution: We will count the opposite: the number of integers k (with 0 ≤
k ≤ 2014) such that

(
2014
k

)
is not a multiple of 4. An integer that is not a

multiple of 4 either is odd (has no factors of 2) or has exactly one factor of 2.
By Kummer’s theorem, the numer of factors of 2 in

(
2014
k

)
is the number

of carries when k and 2014 − k are added in base 2 (binary). So
(
2014
k

)
not

being a multiple of 4 means that when k and 2014− k are added in binary,
the number of carries is either 0 or 1.

Let’s compute the binary representation of 2014. Because 2014 is just a
little less than a power of 2 (namely 34 less than 2048 = 211), it’s easy to
find the binary representation of 2014. Namely, 2014 = 111110111102. We
will number the bit positions 0, 1, 2, . . . , starting from the right. So 2014
has 0’s in positions 0 and 5, and has 1’s in the other 9 positions.

Let’s first count the number of k such that
(
2014
k

)
is odd. In that case,

there won’t be any carries when k and 2014 − k are added in binary. For
that to work out, k must have 0’s in positions 0 and 5 (matching 2014), but
the other 9 bits of k can be arbitrary. So the number of such k is 29 = 512.

Next, let’s count the number of k such that
(
2014
k

)
has exactly one factor

of 2 (a so-called “oddly even” or “singly even” number). In that case, there
will be exactly one carry when k and 2014 − k in binary. There are two
possibilities: k either has 0’s in positions 1 and 5 and a 1 in position 0
(subcase 1) or has 0’s in positions 0 and 6 and a 1 in position 5 (subcase
2). In subcase 1, the value of k has 3 fixed bits and 8 arbitrary bits, so the
number of such k is 28 = 256. In subcase 2, the value of k also has 3 fixed bits
and 8 arbitrary bits, so the number of such k is again 28 = 256. Hence the
number of k such that

(
2014
k

)
has exactly one factor of 2 is 256 + 256 = 512.

Combining the two previous paragraphs, we see that the number of in-
tegers k (with 0 ≤ k ≤ 2014) such that

(
2014
k

)
is not a multiple of 4 is

512 + 512 = 1024. So the number of k such that
(
2014
k

)
is a multiple of 4 is

2015− 1024 = 991 .

Problem 19 Let n be a positive integer. Let (a, b, c) be a random ordered
triple of nonnegative integers such that a + b + c = n, chosen uniformly at
random from among all such triples. Let Mn be the expected value (average
value) of the largest of a, b, and c. As n approaches infinity, what value does
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Mn

n
approach? Express your answer as a fraction in simplest form.

Answer:
11

18

Solution:
Call a triple (a, b, c) valid if a, b, and c are nonnegative integers such that

a+ b+ c = n. We will first count the number of valid triples. By the “stars
and bars” method, we can view this count as the number of ways to arrange
n identical objects (“stars”) and 2 identical dividers (“bars”). Out of n + 2
possible positions, we have to choose 2 positions for the dividers. So the
count is (

n+ 2

2

)
=

(n+ 2)(n+ 1)

2
=

1

2
n2 +O(n).

Let m be an integer. We will count the number of valid triples (a, b, c)
such that max(a, b, c) = m. If (a, b, c) is such a triple, then

m = max(a, b, c) ≤ a+ b+ c = n.

In the opposite direction, we have

m = max(a, b, c) ≥ a+ b+ c

3
=
n

3
.

So we may assume that n
3
≤ m ≤ n. If m = n

3
, then the only possible such

triple is (m,m,m), which we can ignore as negligible. So we will assume that
n
3
< m ≤ n.

To count the number of valid triples (a, b, c) such that max(a, b, c) = m,
we will divide into two cases, depending on the value of m.

Case n
3
< m ≤ n

2
: The only valid triples (a, b, c) in which the maximumm

is achieved by two of the variables are the three triples (m,m, n − 2m),
(m,n − 2m,m), and (n − 2m,m,m). Otherwise, the maximum is achieved
by exactly one of the variables. Let’s temporarily assume that the maximum
is achieved uniquely by c, and later multiply the count by 3 to account for
the maximum being a, b, or c. So c = m, a < m, and b < m. Because c = m,
we have a+ b = n− c = n−m. So the only pairs (a, b) are

(n−2m+1,m−1), (n−2m+2,m−2), . . . , (m−2, n−2m+2), (m−1, n−2m+1).

The number of such pairs is

(m− 1)− (n− 2m+ 1) + 1 = 3m− n− 1.
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So the number of valid triples (a, b, c) such that the maximum m is achieved
uniquely is three times this count, or 9m − 3n − 3. Hence the number of
valid triples (a, b.c) such that max(a, b, c) = m is 3 more than this count, or
9m− 3n.

Case n
2
< m ≤ n: Because m > n

2
, the maximum max(a, b, c) = m is

achieved uniquely. Assume for the moment that c is the maximum m. Then
a+ b = n− c = n−m. So the only pairs (a, b) are

(0, n−m), (1, n−m− 1), . . . , (n−m− 1, 1), (n−m, 0).

The number of such pairs is n −m + 1. Hence the number of valid triples
(a, b, c) such that max(a, b, c) = m is three times this count, or 3n− 3m+ 3.

We can sum up max(a, b, c) over all valid triples (a, b, c). We have∑
a,b,c

max(a, b, c) =
∑
m

∑
a,b,c

max(a,b,c)=m

max(a, b, c)

=
∑
m

∑
a,b,c

max(a,b,c)=m

m

=
∑
m

m |{(a, b, c) : max(a, b, c) = m}| .

As before, we will split the possible m into two cases. (The third case m = n
3

contributes at most O(n) to the sum.) We have∑
a,b,c

max(a, b, c) = O(n) +
∑
m

n/3<m≤n/2

m(9m− 3n) +
∑
m

n/2<m≤n

m(3n− 3m+ 3)

= O(n) + 9
∑
m

n/3<m≤n/2

m2 − 3n
∑
m

n/3<m≤n/2

m

+ (3n+ 3)
∑
m

n/2<m≤n

m− 3
∑
m

n/2<m≤n

m2.

Recall that the sum of the first k positive integers is

k(k + 1)

2
=

1

2
k2 +O(k).

Similarly, the sum of the squares of the first k positive integers is

k(k + 1)(2k + 1)

6
=

1

3
k3 +O(k2).
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So we can estimate our previous sums by∑
a,b,c

max(a, b, c) = O(n2) + 9
[1
3

(n
2

)3 − 1

3

(n
3

)3]− 3n
[1
2

(n
2

)2 − 1

2

(n
3

)2]
+ (3n+ 3)

[1
2
n2 − 1

2

(n
2

)2]− 3
[1
3
n3 − 1

3

(n
2

)3]
= O(n2) + 9

[1
3
· 19

216
n3
]
− 3n

[1
2
· 5

36
n2
]

+ (3n+ 3)
[1
2
· 3

4
n2
]
− 3
[1
3
· 7

8
n3
]

= O(n2) +
19

72
n3 − 15

72
n3 +

9

8
n3 − 7

8
n3

=
11

36
n3 +O(n2).

Finally, we can estimate Mn, the expected value of max(a, b, c) over all
valid triples. Recall that the number of valid triples is 1

2
n2 +O(n). So Mn is

Mn =
11
36
n3 +O(n2)

1
2
n2 +O(n)

=
11

18
n+O(1).

Dividing by n gives
Mn

n
=

11

18
+O

( 1

n

)
.

So as n approaches infinity, Mn

n
approaches

11

18
.

Problem 20 How many complex numbers z such that |z| < 30 satisfy the
equation

ez =
z − 1

z + 1
?

Answer: 10

Solution: Let z = x+ yi, where x and y are real. Then

|ez| = |ex+yi| = |ex · eiy| = |ex| · |eiy| = ex · 1 = ex.

So ez is inside the unit circle if x < 0, is on the unit circle if x = 0, and is
outside the unit circle if x > 0.
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Also, note that z is closer to −1 than to 1 if x < 0, is equidistant to 1
and −1 if x = 0, and is closer to 1 than to −1 if x > 0. So z−1

z+1
is outside the

unit circle (or undefined) if x < 0, is on the unit circle if x = 0, and is inside
the unit circle if x > 0.

Comparing the two previous paragraphs, we see that if ez = z−1
z+1

, then
x = 0. So z is the purely imaginary number yi.

Also, note that z satisfies the original equation if and only if −z does. So
at first we will assume that y is positive, and at the end we will double the
number of roots to account for negative y. (Note that y 6= 0, because z = 0
is not a root of the original equation.)

Subsituting z = yi into the equation ez = z−1
z+1

gives the new equation

eiy =
iy − 1

iy + 1
.

By the first two paragraphs, we know that both sides of the equation are
always on the unit circle. The only thing we don’t know is when the two
sides are at the same point on the unit circle.

Given a nonzero complex number w, the angle of w (often called the
argument of w) is the angle in the interval [0, 2π) that the segment from 0
to w makes with the positive x-axis. (In other words, the angle when w is
written in polar form.)

Let’s reason about angles. As y increases from 0 to∞, the angle of iy−1
strictly decreases from π to π

2
, while the angle of iy+1 strictly increases from

0 to π
2
. So the angle of iy−1

iy+1
strictly decreases from π to 0.

Let n be a nonnegative integer. We will consider y in the interval from
2nπ to (2n+ 2)π.

As y increases from 2nπ to (2n + 1)π, the angle of eiy strictly increases
from 0 to π. As y increases from (2n+ 1)π to just under (2n+ 2)π, the angle
of eiy strictly increases from π to just under 2π.

Comparing the angle information for iy−1
iy+1

and eiy above, we see that iy−1
iy+1

and eiy are equal for exactly one y in (2nπ, (2n + 1)π), and for no y in
[(2n + 1)π, (2n + 2)π]. So we have exactly one root of y in each of (0, π),
(2π, 3π), (4π, 5π), (6π, 7π), and (8π, 9π). That gives 5 positive roots for y.
We don’t have to go further because 9π < 30 < 10π.

Because we have 5 positive roots for y, by symmetry we have 5 negative
roots for y. Altogether, the total number of roots is 10 .
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