The Advantage Testing Foundation
 Math Prize for Girls Olympiad
 Wednesday, November 16, 2016
 Time Limit: 4 hours

1. Triangle T_{1} has sides of length a_{1}, b_{1}, and c_{1}; its area is K_{1}. Triangle T_{2} has sides of length a_{2}, b_{2}, and c_{2}; its area is K_{2}. Triangle T_{3} has sides of length $a_{1}+a_{2}, b_{1}+b_{2}$, and $c_{1}+c_{2}$; its area is K_{3}.
(a) Prove that $K_{1}^{2}+K_{2}^{2}<K_{3}^{2}$.
(b) Prove that $\sqrt{K_{1}}+\sqrt{K_{2}} \leq \sqrt{K_{3}}$.
2. Eve picked some apples, each weighing at most $\frac{1}{2}$ pound. Her apples weigh a total of W pounds, where $W>\frac{1}{3}$. Prove that she can place all her apples into $\left\lceil\frac{3 W-1}{2}\right\rceil$ or fewer baskets, each of which holds up to 1 pound of apples. (The apples are not allowed to be cut into pieces.) Note: If x is a real number, then $\lceil x\rceil$ (the ceiling of x) is the least integer that is greater than or equal to x.
3. Let n be a positive integer. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of n real numbers. Say that a sequence $a_{1}, a_{2}, \ldots, a_{n}$ is unimodular if each a_{i} is ± 1. Prove that

$$
\sum a_{1} a_{2} \ldots a_{n}\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)^{n}=2^{n} n!x_{1} x_{2} \ldots x_{n}
$$

where the sum is over all 2^{n} unimodular sequences $a_{1}, a_{2}, \ldots, a_{n}$.
4. Let $d(n)$ be the number of positive divisors of a positive integer n. Let \mathbb{N} be the set of all positive integers. Say that a bijection F from \mathbb{N} to \mathbb{N} is divisor-friendly if $d(F(m n))=d(F(m)) d(F(n))$ for all positive integers m and n. (Note: A bijection is a one-to-one, onto function.) Does there exist a divisor-friendly bijection? Prove or disprove.

