THE ADVANTAGE TESTING FOUNDATION MATH PRIZE FOR GIRLS OLYMPIAD Wednesday, November 16, 2016 Time Limit: 4 hours

- 1. Triangle T_1 has sides of length a_1 , b_1 , and c_1 ; its area is K_1 . Triangle T_2 has sides of length a_2 , b_2 , and c_2 ; its area is K_2 . Triangle T_3 has sides of length $a_1 + a_2$, $b_1 + b_2$, and $c_1 + c_2$; its area is K_3 .
 - (a) Prove that $K_1^2 + K_2^2 < K_3^2$.
 - (b) Prove that $\sqrt{K_1} + \sqrt{K_2} \le \sqrt{K_3}$.
- 2. Eve picked some apples, each weighing at most $\frac{1}{2}$ pound. Her apples weigh a total of W pounds, where $W > \frac{1}{3}$. Prove that she can place all her apples into $\lceil \frac{3W-1}{2} \rceil$ or fewer baskets, each of which holds up to 1 pound of apples. (The apples are not allowed to be cut into pieces.) Note: If x is a real number, then $\lceil x \rceil$ (the ceiling of x) is the least integer that is greater than or equal to x.
- **3.** Let n be a positive integer. Let x_1, x_2, \ldots, x_n be a sequence of n real numbers. Say that a sequence a_1, a_2, \ldots, a_n is unimodular if each a_i is ± 1 . Prove that

$$\sum a_1 a_2 \dots a_n (a_1 x_1 + a_2 x_2 + \dots + a_n x_n)^n = 2^n n! x_1 x_2 \dots x_n,$$

where the sum is over all 2^n unimodular sequences a_1, a_2, \ldots, a_n .

4. Let d(n) be the number of positive divisors of a positive integer n. Let \mathbb{N} be the set of all positive integers. Say that a bijection F from \mathbb{N} to \mathbb{N} is *divisor-friendly* if d(F(mn)) = d(F(m))d(F(n)) for all positive integers m and n. (Note: A bijection is a one-to-one, onto function.) Does there exist a divisor-friendly bijection? Prove or disprove.