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Problem 1 Triangle T1 has sides of length a1, b1, and c1; its area is K1.
Triangle T2 has sides of length a2, b2, and c2; its area is K2. Triangle T3 has
sides of length a1 + a2, b1 + b2, and c1 + c2; its area is K3.

(a) Prove that K2
1 + K2

2 < K2
3 .

(b) Prove that
√
K1 +

√
K2 ≤

√
K3 .

Solution: Let a3 = a1 + a2, let b3 = b1 + b2, and let c3 = c1 + c2. Then
triangle Ti has sides of length ai, bi, and ci (for i from 1 to 3). Let si be
the semiperimeter (ai + bi + ci)/2; note that s3 = s1 + s2. Let pi = si − ai,
let qi = si − bi, and let ri = si − ci; note that p3 = p1 + p2, q3 = q1 + q2,
and r3 = r1 + r2. All these numbers are positive by the triangle inequality.
Heron’s formula says that the area Ki is

√
piqirisi.

(a) From our work above, we have

K2
3 = p3q3r3s3

= (p1 + p2)(q1 + q2)(r1 + r2)(s1 + s2)

> p1q1r1s1 + p2q2r2s2

= K2
1 + K2

2 .

(b) By applying the Cauchy-Schwarz inequality three times, we have√
K1 +

√
K2 = (p1q1r1s1)

1/4 + (p2q2r2s2)
1/4

= (p1q1)
1/4(r1s1)

1/4 + (p2q2)
1/4(r2s2)

1/4

≤
√

(p1q1)1/2 + (p2q2)1/2
√

(r1s1)1/2 + (r2s2)1/2

≤
[
(p1 + p2)

1/4(q1 + q2)
1/4
][

(r1 + r2)
1/4(s1 + s2)

1/4
]

= (p3q3r3s3)
1/4

=
√

K3 .
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Alternative Solution: Instead of the Cauchy-Schwarz inequality, we
could have used the AM-GM inequality or the generalized Hölder’s
inequality.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 2 Eve picked some apples, each weighing at most 1
2

pound. Her
apples weigh a total of W pounds, where W > 1

3
. Prove that she can place all

her apples into
⌈
3W−1

2

⌉
or fewer baskets, each of which holds up to 1 pound

of apples. (The apples are not allowed to be cut into pieces.) Note: If x is
a real number, then dxe (the ceiling of x) is the least integer that is greater
than or equal to x.

Solution: We will start with the following lemma about packing one basket.

Lemma 1 If W > 2
3
, then there is a subset of the apples that weighs more

than 2
3

pounds and at most 1 pound. 2

Proof Because W > 2
3
, there is more than one apple. Say the two heaviest

apples weigh x and y pounds, respectively. If x + y > 2
3
, then we’re done:

choose the two heaviest apples. Otherwise, x + y ≤ 2
3
. Every other apple,

being no heavier than the first two, weighs at most 1
3

pound. Add the two
heaviest apples to the subset, and then keep adding apples to the subset
until it first exceeds 2

3
pounds. The final apple weighs at most 1

3
pound and

the previous apples of the subset weigh at most 2
3

pounds. Hence the subset
weighs at most 1 pound. �

We claim that for every positive integer b, if W ≤ 2b+1
3

, then Eve can
pack all her apples in at most b baskets (each of which holds up to 1 pound
of apples). This claim solves the problem, by choosing b to be the ceiling of
3W−1

2
. We will prove the claim by induction on b. The base case, b = 1, is

trivial: if W ≤ 1, then Eve can pack all her apples in 1 basket. By induction,
suppose the claim is true for b− 1; we will prove it for b.

If W ≤ 2
3
, then we’re done: pack all the apples in one basket. Otherwise,

W > 2
3
. By the Lemma, there is a subset of the apples that weighs V pounds,

where 2
3
< V ≤ 1. Pack this subset of apples in one basket. Note that

W − V < W − 2

3
≤ 2b + 1

3
− 2

3
=

2b− 1

3
.

So by induction, we can pack all the apples not in the subset in b−1 baskets.
Hence we can pack all the apples in b baskets. That completes the inductive
proof of the claim, and we’re done.
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Problem 3 Let n be a positive integer. Let x1, x2, . . . , xn be a sequence of
n real numbers. Say that a sequence a1, a2, . . . , an is unimodular if each ai
is ±1. Prove that∑

a1a2 . . . an(a1x1 + a2x2 + · · ·+ anxn)n = 2nn!x1x2 . . . xn,

where the sum is over all 2n unimodular sequences a1, a2, . . . , an.

Solution: An expression of the form (y1 + y2 + · · · + yj)
n can be expanded

into the sum ∑
f

yf(1)yf(2) . . . yf(n) ,

where the sum is over all functions f from {1, . . . , n} to {1, . . . , j}. In par-
ticular, we have

(a1x1 + a2x2 + · · ·+ anxn)n =
∑
f

af(1) . . . af(n)xf(1) . . . xf(n) ,

where the sum is over all functions f from {1, . . . , n} to itself. So the sum
we’re interested in is∑

a

a1 . . . an(a1x1 + · · ·+ anxn)n

=
∑
a

a1 . . . an
∑
f

af(1) . . . af(n)xf(1) . . . xf(n)

=
∑
f

xf(1) . . . xf(n)

∑
a

a1 . . . anaf(1) . . . af(n).

We will partition this sum into two cases.
Case 1: f is a permutation. Then we have

xf(1) . . . xf(n)

∑
a

a1 . . . anaf(1) . . . af(n) = x1 . . . xn

∑
a

a21 . . . a
2
n

= x1 . . . xn

∑
a

1

= 2nx1 . . . xn.

Because there are n! permutations, the permutations contribute 2nn!x1 . . . xn

to the sum.
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Case 2: f is not a permutation. Then some number k in {1, . . . , n} is
missing from the image of f . Given a unimodular sequence a, define its k-flip
to be the unimodular sequence b that is the same as a except that bk = −ak.
Note that

b1 . . . bnbf(1) . . . bf(n) = −a1 . . . anaf(1) . . . af(n) .

In other words, the terms a1 . . . anaf(1) . . . af(n) and b1 . . . bnbf(1) . . . bf(n) can-
cel out. The 2n unimodular sequences can be partitioned into 2n−1 pairs of
k-flips. So the entire sum∑

a

a1 . . . anaf(1) . . . af(n)

vanishes. As a result, the non-permutations contribute nothing to the sum.
Adding the two cases, we see that the total sum is 2nn!x1 . . . xn.
Alternative Solution: In the first step, we could have used the multi-

nomial theorem.

Problem 4 Let d(n) be the number of positive divisors of a positive inte-
ger n. Let N be the set of all positive integers. Say that a bijection F from
N to N is divisor-friendly if d(F (mn)) = d(F (m))d(F (n)) for all positive
integers m and n. (Note: A bijection is a one-to-one, onto function.) Does
there exist a divisor-friendly bijection? Prove or disprove.

Solution: Yes, there is a divisor-friendly bijection. We will construct one
below.

Note that the divisor function d maps 1 to itself and maps N − {1} to
N− {1}.

Lemma 2 If k is an integer greater than 1, then its preimage d−1(k) is
infinite. 2

Proof If p is a prime number, then d(pk−1) = k. So d−1(k) contains pk−1

for every prime p. �

We will construct our divisor-friendly bijection F inductively. If n = 1,
then let F (n) be 1. If n is prime, then let F (n) be the smallest integer in N−
{F (1), F (2), . . . , F (n−1)}. If n is composite, then the divisor-friendly condi-
tion forces d(F (n)) to be a particular integer k > 1. (Namely, if n is the prod-
uct of primes p1p2 · · · pi, then k is the product d(F (p1))d(F (p2)) · · · d(F (pi)).)

4



Math Prize for Girls Olympiad 2016 Solutions

Then define F (n) to be some integer in d−1(k)−{F (1), F (2), . . . , F (n− 1)}.
(By the Lemma, the set of choices is infinite and hence nonempty.)

We claim that F is a divisor-friendly bijection. We need to show that F
is one-to-one, onto, and divisor-friendly.

By construction, we made F (n) different from all previous values, so F
is one-to-one.

Let’s show that F is onto. Given a positive integer y, we will show that
it is in the image of F . Because F is one-to-one, there is a prime p such that
F (p) > y. Hence, by our prime construction, y is in {F (1), F (2), . . . , F (p−
1)}. In particular, y is in the image of F .

Finally, let’s show that F is divisor-friendly. If m is the product of primes
p1p2 · · · pi, then d(F (m)) is the product d(F (p1))d(F (p2)) · · · d(F (pi)). (If m
is 1 or prime, then this identity is trivial. If m is composite, then it’s true
by our composite construction.) Similarly, if n is the product of primes
q1q2 · · · qj, then d(F (n)) is the product d(F (q1))d(F (q2)) · · · d(F (qj)). Sim-
ilarly, because mn is the product of primes p1 · · · piq1 · · · qj, we know that
d(F (mn)) is the product d(F (p1)) · · · d(F (pi))d(F (q1)) · · · d(F (qj)). So F is
divisor-friendly.

Note: This problem was proposed by Oleg Kryzhanovsky.
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