The Advantage Testing Foundation

Math Prize for Girls at MIT

2016 Olympiad Solutions

Problem 1 Triangle T_{1} has sides of length a_{1}, b_{1}, and c_{1}; its area is K_{1}. Triangle T_{2} has sides of length a_{2}, b_{2}, and c_{2}; its area is K_{2}. Triangle T_{3} has sides of length $a_{1}+a_{2}, b_{1}+b_{2}$, and $c_{1}+c_{2}$; its area is K_{3}.
(a) Prove that $K_{1}^{2}+K_{2}^{2}<K_{3}^{2}$.
(b) Prove that $\sqrt{K_{1}}+\sqrt{K_{2}} \leq \sqrt{K_{3}}$.

Solution: Let $a_{3}=a_{1}+a_{2}$, let $b_{3}=b_{1}+b_{2}$, and let $c_{3}=c_{1}+c_{2}$. Then triangle T_{i} has sides of length a_{i}, b_{i}, and c_{i} (for i from 1 to 3). Let s_{i} be the semiperimeter $\left(a_{i}+b_{i}+c_{i}\right) / 2$; note that $s_{3}=s_{1}+s_{2}$. Let $p_{i}=s_{i}-a_{i}$, let $q_{i}=s_{i}-b_{i}$, and let $r_{i}=s_{i}-c_{i}$; note that $p_{3}=p_{1}+p_{2}, q_{3}=q_{1}+q_{2}$, and $r_{3}=r_{1}+r_{2}$. All these numbers are positive by the triangle inequality. Heron's formula says that the area K_{i} is $\sqrt{p_{i} q_{i} r_{i} s_{i}}$.
(a) From our work above, we have

$$
\begin{aligned}
K_{3}^{2} & =p_{3} q_{3} r_{3} s_{3} \\
& =\left(p_{1}+p_{2}\right)\left(q_{1}+q_{2}\right)\left(r_{1}+r_{2}\right)\left(s_{1}+s_{2}\right) \\
& >p_{1} q_{1} r_{1} s_{1}+p_{2} q_{2} r_{2} s_{2} \\
& =K_{1}^{2}+K_{2}^{2} .
\end{aligned}
$$

(b) By applying the Cauchy-Schwarz inequality three times, we have

$$
\begin{aligned}
\sqrt{K_{1}}+\sqrt{K_{2}} & =\left(p_{1} q_{1} r_{1} s_{1}\right)^{1 / 4}+\left(p_{2} q_{2} r_{2} s_{2}\right)^{1 / 4} \\
& =\left(p_{1} q_{1}\right)^{1 / 4}\left(r_{1} s_{1}\right)^{1 / 4}+\left(p_{2} q_{2}\right)^{1 / 4}\left(r_{2} s_{2}\right)^{1 / 4} \\
& \leq \sqrt{\left(p_{1} q_{1}\right)^{1 / 2}+\left(p_{2} q_{2}\right)^{1 / 2}} \sqrt{\left(r_{1} s_{1}\right)^{1 / 2}+\left(r_{2} s_{2}\right)^{1 / 2}} \\
& \leq\left[\left(p_{1}+p_{2}\right)^{1 / 4}\left(q_{1}+q_{2}\right)^{1 / 4}\right]\left[\left(r_{1}+r_{2}\right)^{1 / 4}\left(s_{1}+s_{2}\right)^{1 / 4}\right] \\
& =\left(p_{3} q_{3} r_{3} s_{3}\right)^{1 / 4} \\
& =\sqrt{K_{3}} .
\end{aligned}
$$

Alternative Solution: Instead of the Cauchy-Schwarz inequality, we could have used the AM-GM inequality or the generalized Hölder's inequality.

Note: This problem was proposed by Oleg Kryzhanovsky.
Problem 2 Eve picked some apples, each weighing at most $\frac{1}{2}$ pound. Her apples weigh a total of W pounds, where $W>\frac{1}{3}$. Prove that she can place all her apples into $\left\lceil\frac{3 W-1}{2}\right\rceil$ or fewer baskets, each of which holds up to 1 pound of apples. (The apples are not allowed to be cut into pieces.) Note: If x is a real number, then $\lceil x\rceil$ (the ceiling of x) is the least integer that is greater than or equal to x.

Solution: We will start with the following lemma about packing one basket.
Lemma 1 If $W>\frac{2}{3}$, then there is a subset of the apples that weighs more than $\frac{2}{3}$ pounds and at most 1 pound.
Proof Because $W>\frac{2}{3}$, there is more than one apple. Say the two heaviest apples weigh x and y pounds, respectively. If $x+y>\frac{2}{3}$, then we're done: choose the two heaviest apples. Otherwise, $x+y \leq \frac{2}{3}$. Every other apple, being no heavier than the first two, weighs at most $\frac{1^{3}}{3}$ pound. Add the two heaviest apples to the subset, and then keep adding apples to the subset until it first exceeds $\frac{2}{3}$ pounds. The final apple weighs at most $\frac{1}{3}$ pound and the previous apples of the subset weigh at most $\frac{2}{3}$ pounds. Hence the subset weighs at most 1 pound.

We claim that for every positive integer b, if $W \leq \frac{2 b+1}{3}$, then Eve can pack all her apples in at most b baskets (each of which holds up to 1 pound of apples). This claim solves the problem, by choosing b to be the ceiling of $\frac{3 W-1}{2}$. We will prove the claim by induction on b. The base case, $b=1$, is trivial: if $W \leq 1$, then Eve can pack all her apples in 1 basket. By induction, suppose the claim is true for $b-1$; we will prove it for b.

If $W \leq \frac{2}{3}$, then we're done: pack all the apples in one basket. Otherwise, $W>\frac{2}{3}$. By the Lemma, there is a subset of the apples that weighs V pounds, where $\frac{2}{3}<V \leq 1$. Pack this subset of apples in one basket. Note that

$$
W-V<W-\frac{2}{3} \leq \frac{2 b+1}{3}-\frac{2}{3}=\frac{2 b-1}{3} .
$$

So by induction, we can pack all the apples not in the subset in $b-1$ baskets. Hence we can pack all the apples in b baskets. That completes the inductive proof of the claim, and we're done.

Problem 3 Let n be a positive integer. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of n real numbers. Say that a sequence $a_{1}, a_{2}, \ldots, a_{n}$ is unimodular if each a_{i} is ± 1. Prove that

$$
\sum a_{1} a_{2} \ldots a_{n}\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)^{n}=2^{n} n!x_{1} x_{2} \ldots x_{n}
$$

where the sum is over all 2^{n} unimodular sequences $a_{1}, a_{2}, \ldots, a_{n}$.
Solution: An expression of the form $\left(y_{1}+y_{2}+\cdots+y_{j}\right)^{n}$ can be expanded into the sum

$$
\sum_{f} y_{f(1)} y_{f(2)} \ldots y_{f(n)}
$$

where the sum is over all functions f from $\{1, \ldots, n\}$ to $\{1, \ldots, j\}$. In particular, we have

$$
\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)^{n}=\sum_{f} a_{f(1)} \ldots a_{f(n)} x_{f(1)} \ldots x_{f(n)}
$$

where the sum is over all functions f from $\{1, \ldots, n\}$ to itself. So the sum we're interested in is

$$
\begin{aligned}
\sum_{a} a_{1} \ldots a_{n} & \left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right)^{n} \\
& =\sum_{a} a_{1} \ldots a_{n} \sum_{f} a_{f(1)} \ldots a_{f(n)} x_{f(1)} \ldots x_{f(n)} \\
& =\sum_{f} x_{f(1)} \ldots x_{f(n)} \sum_{a} a_{1} \ldots a_{n} a_{f(1)} \ldots a_{f(n)}
\end{aligned}
$$

We will partition this sum into two cases.
Case 1: f is a permutation. Then we have

$$
\begin{aligned}
x_{f(1)} \ldots x_{f(n)} \sum_{a} a_{1} \ldots a_{n} a_{f(1)} \ldots a_{f(n)} & =x_{1} \ldots x_{n} \sum_{a} a_{1}^{2} \ldots a_{n}^{2} \\
& =x_{1} \ldots x_{n} \sum_{a} 1 \\
& =2^{n} x_{1} \ldots x_{n}
\end{aligned}
$$

Because there are n ! permutations, the permutations contribute $2^{n} n!x_{1} \ldots x_{n}$ to the sum.

Case 2: f is not a permutation. Then some number k in $\{1, \ldots, n\}$ is missing from the image of f. Given a unimodular sequence a, define its k-flip to be the unimodular sequence b that is the same as a except that $b_{k}=-a_{k}$. Note that

$$
b_{1} \ldots b_{n} b_{f(1)} \ldots b_{f(n)}=-a_{1} \ldots a_{n} a_{f(1)} \ldots a_{f(n)}
$$

In other words, the terms $a_{1} \ldots a_{n} a_{f(1)} \ldots a_{f(n)}$ and $b_{1} \ldots b_{n} b_{f(1)} \ldots b_{f(n)}$ cancel out. The 2^{n} unimodular sequences can be partitioned into 2^{n-1} pairs of k-flips. So the entire sum

$$
\sum_{a} a_{1} \ldots a_{n} a_{f(1)} \ldots a_{f(n)}
$$

vanishes. As a result, the non-permutations contribute nothing to the sum.
Adding the two cases, we see that the total sum is $2^{n} n!x_{1} \ldots x_{n}$.
Alternative Solution: In the first step, we could have used the multinomial theorem.

Problem 4 Let $d(n)$ be the number of positive divisors of a positive integer n. Let \mathbb{N} be the set of all positive integers. Say that a bijection F from \mathbb{N} to \mathbb{N} is divisor-friendly if $d(F(m n))=d(F(m)) d(F(n))$ for all positive integers m and n. (Note: A bijection is a one-to-one, onto function.) Does there exist a divisor-friendly bijection? Prove or disprove.

Solution: Yes, there is a divisor-friendly bijection. We will construct one below.

Note that the divisor function d maps 1 to itself and maps $\mathbb{N}-\{1\}$ to $\mathbb{N}-\{1\}$.

Lemma 2 If k is an integer greater than 1, then its preimage $d^{-1}(k)$ is infinite.

Proof If p is a prime number, then $d\left(p^{k-1}\right)=k$. So $d^{-1}(k)$ contains p^{k-1} for every prime p.

We will construct our divisor-friendly bijection F inductively. If $n=1$, then let $F(n)$ be 1 . If n is prime, then let $F(n)$ be the smallest integer in \mathbb{N} $\{F(1), F(2), \ldots, F(n-1)\}$. If n is composite, then the divisor-friendly condition forces $d(F(n))$ to be a particular integer $k>1$. (Namely, if n is the product of primes $p_{1} p_{2} \cdots p_{i}$, then k is the product $\left.d\left(F\left(p_{1}\right)\right) d\left(F\left(p_{2}\right)\right) \cdots d\left(F\left(p_{i}\right)\right).\right)$

Then define $F(n)$ to be some integer in $d^{-1}(k)-\{F(1), F(2), \ldots, F(n-1)\}$. (By the Lemma, the set of choices is infinite and hence nonempty.)

We claim that F is a divisor-friendly bijection. We need to show that F is one-to-one, onto, and divisor-friendly.

By construction, we made $F(n)$ different from all previous values, so F is one-to-one.

Let's show that F is onto. Given a positive integer y, we will show that it is in the image of F. Because F is one-to-one, there is a prime p such that $F(p)>y$. Hence, by our prime construction, y is in $\{F(1), F(2), \ldots, F(p-$ $1)\}$. In particular, y is in the image of F.

Finally, let's show that F is divisor-friendly. If m is the product of primes $p_{1} p_{2} \cdots p_{i}$, then $d(F(m))$ is the product $d\left(F\left(p_{1}\right)\right) d\left(F\left(p_{2}\right)\right) \cdots d\left(F\left(p_{i}\right)\right)$. (If m is 1 or prime, then this identity is trivial. If m is composite, then it's true by our composite construction.) Similarly, if n is the product of primes $q_{1} q_{2} \cdots q_{j}$, then $d(F(n))$ is the product $d\left(F\left(q_{1}\right)\right) d\left(F\left(q_{2}\right)\right) \cdots d\left(F\left(q_{j}\right)\right)$. Similarly, because $m n$ is the product of primes $p_{1} \cdots p_{i} q_{1} \cdots q_{j}$, we know that $d(F(m n))$ is the product $d\left(F\left(p_{1}\right)\right) \cdots d\left(F\left(p_{i}\right)\right) d\left(F\left(q_{1}\right)\right) \cdots d\left(F\left(q_{j}\right)\right)$. So F is divisor-friendly.

Note: This problem was proposed by Oleg Kryzhanovsky.

