The Advantage Testing Foundation
 Math Prize for Girls Olympiad
 Thursday, November 16, 2017
 Time Limit: 4 hours

1. Given positive integers n and k, say that n is k-solvable if there are positive integers $a_{1}, a_{2}, \ldots, a_{k}$ (not necessarily distinct) such that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{k}}=1
$$

and

$$
a_{1}+a_{2}+\cdots+a_{k}=n .
$$

Prove that if n is k-solvable, then $42 n+12$ is $(k+3)$-solvable.
2. Let n be a positive integer. Prove that there exist polynomials P and Q with real coefficients such that for every real number x, we have $P(x) \geq 0, Q(x) \geq 0$, and

$$
1-x^{n}=(1-x) P(x)+(1+x) Q(x) .
$$

3. Let $A B C D$ be a cyclic quadrilateral such that $\angle B A D \leq \angle A D C$. Prove that $A C+C D \leq A B+B D$.
4. A lattice point is a point in the plane whose two coordinates are both integers. A lattice line is a line in the plane that contains at least two lattice points. Is it possible to color every lattice point red or blue such that every lattice line contains exactly 2017 red lattice points? Prove that your answer is correct.
