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2017 Olympiad Solutions

Problem 1 Given positive integers n and k, say that n is k-solvable if there
are positive integers a1, a2, . . . , ak (not necessarily distinct) such that

1

a1
+

1

a2
+ · · · +

1

ak
= 1

and
a1 + a2 + · · · + ak = n.

Prove that if n is k-solvable, then 42n+ 12 is (k + 3)-solvable.

Solution: Suppose that n is k-solvable. Then there are positive integers a1,
a2, . . . , ak such that

1

a1
+

1

a2
+ · · · +

1

ak
= 1

and
a1 + a2 + · · · + ak = n.

Let b1, b2, . . . , bk, bk+1, bk+2, bk+3 be the positive integers defined by bi = 42ai
(for 1 ≤ i ≤ k), bk+1 = 2, bk+2 = 3, and bk+3 = 7. Note that

k+3∑
i=1

1

bi
=

k∑
i=1

1

bi
+

1

bk+1

+
1

bk+2

+
1

bk+3

=
k∑

i=1

1

42ai
+

1

2
+

1

3
+

1

7

=
1

42

k∑
i=1

1

ai
+

41

42

=
1

42
· 1 +

41

42
= 1.
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Also

k+3∑
i=1

bi =
k∑

i=1

bi + bk+1 + bk+2 + bk+3

=
k∑

i=1

42ai + 2 + 3 + 7

= 42
k∑

i=1

ai + 12

= 42n+ 12.

Hence 42n+ 12 is (k + 3)-solvable.

Problem 2 Let n be a positive integer. Prove that there exist polynomials
P and Q with real coefficients such that for every real number x, we have
P (x) ≥ 0, Q(x) ≥ 0, and

1 − xn = (1 − x)P (x) + (1 + x)Q(x).

Solution: First, suppose that n is odd. Let P (x) =
∑n−1

k=0 x
k. Let Q(x) = 0.

Because P (x) is a geometric series, we have (1 − x)P (x) = 1 − xn. Hence
1 − xn = (1 − x)P (x) + (1 + x)Q(x). We claim that P is nonnegative. If
x ≥ 0, then every term of P (x) is nonnegative, so P (x) itself is nonnegative.
If x < 1, then both 1 − x and 1 − xn are positive, so P (x) is positive.
Either way, P (x) is nonnegative. And of course Q, the all-zero polynomial,
is nonnegative.

Next, suppose that n is even. Define R(x) = 1
2

∑n/2−1
k=0 x2k. Let P (x) =

(1 + x)2R(x). Let Q(x) = (1 − x)2R(x). Because R(x) is a geometric series,
we have 2(1− x2)R(x) = 1− xn. Note that (1− x)(1 + x)2 + (1 + x)(1− x)2

is 2(1 − x2). Multiplying by R(x), we see that (1 − x)P (x) + (1 + x)Q(x) is
1− xn. Because every term of R is a square, R is nonnegative. Hence P and
Q are nonnegative.

Problem 3 LetABCD be a cyclic quadrilateral such that ∠BAD ≤ ∠ADC.
Prove that AC + CD ≤ AB +BD.

Solution: Because ABCD is cyclic, its vertices lie on a circle. By the
inscribed angle theorem, ∠BAC = ∠BDC; let w be their common measure.
Similarly, let x = ∠CAD = ∠CBD, let y = ∠ACB = ∠ADB, and let
z = ∠ABD = ∠ACD. See the following picture.
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As the picture shows, ∠BAD = w + x and ∠ADC = w + y. Because
∠BAD ≤ ∠ADC, we have x ≤ y. Because the angles in a triangle add up to
180◦, the sum w+ x+ y+ z is 180◦. In particular, x+ y+ z is at most 180◦.

By scaling, we may assume that the diameter of the circle is 1. By the
extended law of sines, we have AC = sin(x + z). Similarly, CD = sinx,
AB = sin y, and BD = sin(y + z).

We will use the sum-to-product identity

sinα + sin β = 2 sin
α + β

2
cos

α− β

2
.

In particular, we have

AC + CD = sin(x+ z) + sin x = 2 sin
(
x+

z

2

)
cos

z

2
.

Similarly, we have

AB +BD = sin y + sin(y + z) = 2 sin
(
y +

z

2

)
cos

z

2
.

Because x ≤ y and x+ y + z ≤ 180◦, we have

0◦ ≤ x+
z

2
≤ y +

z

2
≤ 180◦ −

(
x+

z

2

)
≤ 180◦.

Hence sin
(
x + z

2

)
≤ sin

(
y + z

2

)
. Because 0◦ ≤ z ≤ 180◦, we have cos z

2
≥ 0.

Therefore

AC + CD = 2 sin
(
x+

z

2

)
cos

z

2
≤ 2 sin

(
y +

z

2

)
cos

z

2
= AB +BD.
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Problem 4 A lattice point is a point in the plane whose two coordinates are
both integers. A lattice line is a line in the plane that contains at least two
lattice points. Is it possible to color every lattice point red or blue such that
every lattice line contains exactly 2017 red lattice points? Prove that your
answer is correct.

Solution: Yes, there is a red-blue coloring such that every lattice line con-
tains exactly 2017 red lattice points. We will construct such a coloring below.

First, note that a line containing two lattice points must contain infinitely
many lattice points. So every lattice line contains infinitely many lattice
points.

The set of integers is countable. So the set of lattice points is countable.
Hence the set of pairs of lattice points is countable. Therefore, because two
distinct points determine a line, the set of lattice lines is countable. Let `1,
`2, . . . be an enumeration of all distinct lattice lines.

We will start with every lattice point colored blue. At every time step
(1, 2, . . . ), we will recolor a finite number of the lattice points red. We will
maintain the invariant that, just before every time t (a positive integer), the
lines `1, `2, . . . , `t−1 each contain exactly 2017 red points, while each of the
other lines contain at most 2017 red points.

Suppose we are at time t. The set of (current) red points is finite. So the
set of pairs of red points is finite. Hence the set of lines with at least two
red points is finite. Therefore the set of lines with exactly 2017 red points is
finite. Let S be the finite set of lines with exactly 2017 red points, excluding
line `t. Every line in S intersects `t in at most one point. So the set of lattice
points on `t that are also on some line in S is finite; let P be this finite set
of points. Because P is finite, and at most 2017 points on `t are red (by the
invariant), there are infinitely many lattice points on `t that are neither in P
nor currently red. Recolor up to 2017 of these points red until `t has exactly
2017 red points.

We claim that the invariant from two paragraphs ago is true for every
positive integer t. We will prove the claim by induction. The base case t = 1
holds because we start with the all-blue coloring. Suppose the invariant is
true for t; we will prove it for t + 1. Because every line except `t itself
intersects `t in at most one point, every line except `t will gain at most
one red point during time t. So every line with fewer than 2017 red points
just before time t will have at most 2017 red points just after time t. By
construction, every line with exactly 2017 red points just before time t will
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not gain a red point during time t. In particular, the lines `1, `2, . . . , `t−1

will still each contain exactly 2017 red points. By construction, `t itself will
also have exactly 2017 red points just after time t. Hence we have proved
the claim by induction.

Consider the red-blue coloring that is the limit of the colorings above as
the time t approaches infinity. By the invariant, every lattice line contains
exactly 2017 red lattice points in the limit. Hence the limit coloring is the
desired coloring.

Note: This problem was proposed by Oleg Kryzhanovsky.
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