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Problem 1 Let P be a point in the plane. Suppose that P is inside (or on)
each of 6 circles ω1, ω2, . . . , ω6 in the plane. Prove that there exist distinct
i and j so that the center of circle ωi is inside (or on) circle ωj.

Solution: Let the centers of circles ω1, ω2, . . . , ω6 be called O1, O2, . . . ,
O6 respectively. Without loss of generality, assume that O1, O2, . . . , O6 are
arranged in counterclockwise order with respect to P .

O6

O1O2

O3

O4 O5

P

The angles ∠O1PO2, ∠O2PO3, . . . , ∠O6PO1 add up to 360◦. By the
pigeonhole principle, at least one of the six angles must be less than or equal
to 60◦. Without loss of generality, assume that ∠O1PO2 ≤ 60◦.

Consider the triangle4O1PO2. Because ∠O1PO2 ≤ 60◦, either ∠O1O2P ≥
60◦ or ∠O2O1P ≥ 60◦. Without loss of generality, assume that ∠O1O2P ≥
60◦. In particular, ∠O1O2P ≥ ∠O1PO2.

It is a well-known fact that in every triangle, the side lengths are sorted
in the same order as their opposite angles. Using this fact, we conclude that
O1P ≥ O1O2.
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Let the radius of circle ω1 be r1. Since P is in or on ω1, we have O1P ≤ r1.
It follows that O1O2 ≤ r1. Thus O2 is in or on ω1.

Problem 2 Let d(n) be the number of positive divisors of a positive inte-
ger n. Let N be the set of all positive integers. Say that a function F from
N to N is divisor-respecting if d(F (mn)) = d(F (m))d(F (n)) for all positive
integers m and n, and d(F (n)) ≤ d(n) for all positive integers n. Find all
divisor-respecting functions. Justify your answer.

Solution: The identically-1 function, namely F (n) = 1 for every positive
integer n, is divisor-respecting, because d(1) = 1. We claim that the only
divisor-respecting function is the identically-1 function. Let F be a divisor-
respecting function.

First we prove a lemma about prime numbers.

Lemma For every prime number p, we have F (p) = 1.

Proof Applying the definition of divisor-respecting to m = n = p, we get
that

d(F (p2)) = d(F (p))2

and
d(F (p2)) ≤ d(p2).

Note that d(p2) = 3, as the divisors of p2 are 1, p, and p2. Thus

d(F (p))2 = d(F (p2)) ≤ d(p2) = 3.

Since d(F (p)) is a positive integer, we deduce that d(F (p)) = 1. Finally, we
note that the only positive integer with one divisor is 1, so F (p) = 1. �

We now prove that F (n) = 1 for every positive integer n. Suppose the
prime factorization of n is n = p1p2 · · · pk for some prime numbers p1, p2, . . . ,
pk. By the divisor-respecting property, we can write

d(F (n)) = d(F (p1p2 · · · pk)) = d(F (p1))d(F (p2)) · · · d(F (pk)).

By our lemma, we know that d(F (pi)) = 1 for all 1 ≤ i ≤ k. So d(F (n)) = 1.
Furthermore, F (n) = 1, since the only positive integer with one divisor is 1.

Therefore, F is the identically-1 function.
Note: This problem was proposed by Oleg Kryzhanovsky.
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Problem 3 There is a wooden 3×3×3 cube and 18 rectangular 3×1 paper
strips. Each strip has two dotted lines dividing it into three unit squares.
The full surface of the cube is covered with the given strips, flat or bent.
Each flat strip is on one face of the cube. Each bent strip (bent at one of
its dotted lines) is on two adjacent faces of the cube. What is the greatest
possible number of bent strips? Justify your answer.

Solution: We claim that the greatest possible number of bent strips is 14.
First, we show that placing more than 14 bent strips is impossible. Con-

sider the 8 unit cubes at each corner of the 3× 3× 3 cube, each of which has
three exposed faces (squares) that must be covered. Note that if a bent strip
covers a square on a corner, then it must cover a second square on the same
corner. Thus, because bent strips cover corner squares in pairs, at least one
of the 3 squares per corner must be covered by a flat strip. Moreover, we
note that each flat strip can cover squares on at most two distinct corners.
Therefore, we require at least 4 flat strips to cover all 8 corners. So of the 18
total strips, at most 14 can be bent.

To show that 14 bent strips are possible, we construct an example. The
example below is drawn on the net of a cube, where each variable represents
a separate strip. Flat strips are drawn in red with capital letters.

i j j
f f e
k k l

i f k P P P l e j
i a a a b m l e d
O O O g b m Q Q Q

g b m
g c n
h c n
h c n
h d d
R R R

Note: This problem was proposed by Oleg Kryzhanovsky.
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Problem 4 For all integers x and y, let ax,y be a real number. Suppose that
a0,0 = 0. Suppose that only a finite number of the ax,y are nonzero. Prove
that

∞∑
x=−∞

∞∑
y=−∞

ax,y(ax,2x+y + ax+2y,y) ≤
√

3
∞∑

x=−∞

∞∑
y=−∞

a2x,y .

Solution: Let z be a point (x, y). Define the length of z to be the usual
Euclidean length:

|z| =
√

x2 + y2 .

Let V be the map defined by V (z) = (x, y + 2x). Let H be the map defined
by H(z) = (x + 2y, y). We call these maps V and H because V is a vertical
shear and H is a horizontal shear. The inverse of V is the vertical shear given
by V −1(z) = (x, y − 2x). The inverse of H is the horizontal shear given by
H−1(z) = (x−2y, y). We call V (z), H(z), V −1(z), and H−1(z) the neighbors
of z.

First we prove a lemma that, roughly speaking, says that most neighbors
of a point are farther away from the origin than the original point is.

Lemma Let z be a point different from (0, 0). Then either (a) three neighbors
of z are longer than z and the other neighbor is shorter than z, or (b) two
neighbors of z are longer than z and the other two neighbors are the same
length as z.

Proof Suppose the coordinates of z are (x, y). By replacing x and y with
their negations as necessary, we may assume that x ≥ 0 and y ≥ 0. By
swapping x and y if necessary, we may assume that x ≥ y. Because z is
not (0, 0), we have x > 0.

If y = 0, then V (z) and V −1(z) are longer than z while H(z) and H−1(z)
are the same length as z. So in this case, conclusion (b) holds.

If x = y, then V (z) and H(z) are longer than z while V −1(z) and H−1(z)
are the same length as z. So again in this case, conclusion (b) holds.

Otherwise x > y > 0. Then V (z), V −1(z), and H(z) are longer than z
while H−1(z) is shorter than z. So in this remaining case, conclusion (a)
holds. �

Next we turn to proving inequalities. Let r and s be real numbers. The
inequality

rs ≤ 1

2
r2 +

1

2
s2
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is trivial. Replacing r with r/31/4 and s with 31/4s, we obtain the inequality

rs ≤ 1

2
√

3
r2 +

√
3

2
s2.

In the problem statement, the left-hand side of the inequality is a sum
of terms of the form azaw, where z and w are neighboring points. Because
a0,0 = 0, we may assume that neither z nor w is (0, 0). If |z| < |w|, then we
will bound the term azaw by

azaw ≤
1

2
√

3
a2z +

√
3

2
a2w .

If |z| > |w|, then we will bound the term by

azaw ≤
√

3

2
a2z +

1

2
√

3
a2w .

If |z| = |w|, then we will bound the term by

azaw ≤
1

2
a2z +

1

2
a2w .

Bounding the left-hand side of the original inequality as above will make
the upper bound a sum of terms of the form a constant times a2z.

For a given z 6= (0, 0), let’s enumerate the terms with a2z. By the lemma,
either conclusion (a) or conclusion (b) holds. If conclusion (a) holds, then

the term 1
2
√
3
a2z will appear three times and the term

√
3
2
a2z once, for a total

of
√

3 a2z. If conclusion (b) holds, then the term 1
2
√
3
a2z will appear twice and

the term 1
2
a2z twice, for a total of (1 + 1√

3
)a2z. Either way, the upper bound is

at most
√

3 a2z.
Summing over all z gives the desired inequality.
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