DIRECTIONS

1. Do not open this test until your proctor instructs you to.

2. Fill out the top of your answer sheet. Your student number is on your name tag. Your test version (A, B, C, or D) is above on this page.

3. You may use pencils, pens, and erasers. You may also use the scratch paper that we provide. You may NOT use calculators, rulers, protractors, compasses, graph paper, or books.

4. Write your final answers on the answer sheet. When a problem specifies a particular form for the answer, write your answer in that form. Write your answers clearly. We will collect only the answer sheet from you.

NOTES

1. This test contains 20 problems. You will have 150 minutes (2.5 hours) to take the test. Your score will be the number of correct answers.

2. Figures are not necessarily drawn to scale.

3. Good luck!
1. If \(x \) is a real number such that \((x - 3)(x - 1)(x + 1)(x + 3) + 16 = 116^2\), what is the largest possible value of \(x \)?

2. How many ordered pairs of integers \((x, y)\) satisfy \(2|y| \leq x \leq 40\)?

3. Let \(S \) be the set of all positive integers from 1 through 1000 that are not perfect squares. What is the length of the longest, non-constant, arithmetic sequence that consists of elements of \(S \)?

4. Let \(ABCDEF \) be a regular hexagon. Let \(P \) be the intersection point of \(\overline{AC} \) and \(\overline{BD} \). Suppose that the area of triangle \(EFP \) is 25. What is the area of the hexagon?
5. Consider the following system of 7 linear equations with 7 unknowns:

\[\begin{align*}
 a + b + c + d + e &= 1 \\
 b + c + d + e + f &= 2 \\
 c + d + e + f + g &= 3 \\
 d + e + f + g + a &= 4 \\
 e + f + g + a + b &= 5 \\
 f + g + a + b + c &= 6 \\
 g + a + b + c + d &= 7.
\end{align*}\]

What is \(g\)? Express your answer as a fraction in simplest form.

6. Martha writes down a random mathematical expression consisting of 3 single-digit positive integers with an addition sign “+” or a multiplication sign “×” between each pair of adjacent digits. (For example, her expression could be \(4 + 3 \times 3\), with value 13.) Each positive digit is equally likely, each arithmetic sign (“+” or “×”) is equally likely, and all choices are independent. What is the expected value (average value) of her expression?

7. For every positive integer \(n\), let \(T_n = \frac{n(n+1)}{2}\) be the \(n^{th}\) triangular number. What is the 2018\(^{th}\) smallest positive integer \(n\) such that \(T_n\) is a multiple of 1000?

8. A mustache is created by taking the set of points \((x, y)\) in the \(xy\)-coordinate plane that satisfy \(4 + 4 \cos(\pi x/24) \leq y \leq 6 + 6 \cos(\pi x/24)\) and \(-24 \leq x \leq 24\). What is the area of the mustache?
9. How many 3-term geometric sequences \(a, b, c \) are there where \(a, b, \) and \(c \) are positive integers with \(a < b < c \) and \(c = 8000? \)

10. Let \(T_1 \) be an isosceles triangle with sides of length 8, 11, and 11. Let \(T_2 \) be an isosceles triangle with sides of length \(b, 1, \) and 1. Suppose that the radius of the incircle of \(T_1 \) divided by the radius of the circumcircle of \(T_1 \) is equal to the radius of the incircle of \(T_2 \) divided by the radius of the circumcircle of \(T_2 \). Determine the largest possible value of \(b \). Express your answer as a fraction in simplest form.

11. Maryam has a fair tetrahedral die, with the four faces of the die labeled 1 through 4. At each step, she rolls the die and records which number is on the bottom face. She stops when the current number is greater than or equal to the previous number. (In particular, she takes at least two steps.) What is the expected number (average number) of steps that she takes? Express your answer as a fraction in simplest form.

12. You own a calculator that computes exactly. It has all the standard buttons, including a button that replaces the number currently displayed with its arctangent, and a button that replaces whatever is currently displayed with its cosine. You turn on the calculator and it reads 0. You create a sequence by alternately clicking on the arctangent button and the cosine button. (The calculator is in radian mode.) Let \(a_n \) be the value displayed after you’ve pressed the cosine button for the \(n \)th time. What is \(\prod_{k=1}^{11} a_k \)? Express your answer as a fraction in simplest form.
13. A circle overlaps an equilateral triangle of side length $100\sqrt{3}$. The three chords in the circle formed by the three sides of the triangle have lengths 6, 36, and 60, respectively. What is the area of the circle? Express your answer in terms of π.

14. Let $f(x)$ be the polynomial $\prod_{k=1}^{50} (x - (2k - 1))$. Let c be the coefficient of x^{48} in $f(x)$. When c is divided by 101, what is the remainder? (The remainder is an integer between 0 and 100.)

15. In the xy-coordinate plane, the x-axis and the line $y = x$ are mirrors. If you shoot a laser beam from the point $(126, 21)$ toward a point on the positive x-axis, there are 3 places you can aim at where the beam will bounce off the mirrors and eventually return to $(126, 21)$. They are $(126, 0)$, $(105, 0)$, and a third point $(d, 0)$. What is d? (Recall that when light bounces off a mirror, the angle of incidence has the same measure as the angle of reflection.)

16. Define a function f on the unit interval $0 \leq x \leq 1$ by the rule

$$f(x) = \begin{cases}
1 - 3x & \text{if } 0 \leq x < 1/3; \\
3x - 1 & \text{if } 1/3 \leq x < 2/3; \\
3 - 3x & \text{if } 2/3 \leq x \leq 1.
\end{cases}$$

Determine $f^{(2018)}(1/730)$. Express your answer as a fraction in simplest form. Recall that $f^{(n)}$ denotes the nth iterate of f; for example, $f^{(3)}(1/730) = f(f(f(1/730)))$.

17. Let ABC be a triangle with $AB = 5$, $BC = 4$, and $CA = 3$. On each side of ABC, externally erect a semicircle whose diameter is the corresponding side. Let X be on the semicircular arc erected on side BC such that $\angle CBX$ has measure 15°. Let Y be on the semicircular arc erected on side CA such that $\angle ACY$ has measure 15°. Similarly, let Z be on the semicircular arc erected on side AB such that $\angle BAZ$ has measure 15°. What is the area of triangle XYZ? Express your answer as a fraction in simplest form.

18. Evaluate the expression

$$\left| \prod_{k=0}^{15} \left(1 + e^{2\pi ik^2/31} \right) \right|.$$

19. Consider the sum

$$S_n = \sum_{k=1}^{n} \frac{1}{\sqrt{2k} - 1}.$$

Determine $\lfloor S_{4901} \rfloor$. Recall that if x is a real number, then $\lfloor x \rfloor$ (the floor of x) is the greatest integer that is less than or equal to x.

20. A smooth number is a positive integer of the form 2^m3^n, where m and n are nonnegative integers. Let S be the set of all triples (a, b, c) where a, b, and c are smooth numbers such that $\gcd(a, b)$, $\gcd(b, c)$, and $\gcd(c, a)$ are all distinct. Evaluate the infinite sum $\sum_{(a,b,c) \in S} \frac{1}{abc}$. Express your answer as a fraction in simplest form. Recall that $\gcd(x, y)$ is the greatest common divisor of x and y.