The Advantage Testing Foundation Math Prize for Girls Olympiad
 Wednesday, November 13, 2019
 Time Limit: 4 hours

1. Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Prove that

$$
\left|\bigcup_{1 \leq i \leq n} A_{i}\right| \geq \frac{1}{2} \sum_{1 \leq i \leq n}\left|A_{i}\right|-\frac{1}{6} \sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| .
$$

Recall that if S is a finite set, then its cardinality $|S|$ is the number of elements of S.
2. Let $A B C$ be an equilateral triangle with side length 1 . Say that a point X on side $\overline{B C}$ is balanced if there exists a point Y on side $\overline{A C}$ and a point Z on side $\overline{A B}$ such that the triangle $X Y Z$ is a right isosceles triangle with $X Y=X Z$. Find with proof the length of the set of all balanced points on side $\overline{B C}$.
3. Say that a positive integer is red if it is of the form n^{2020}, where n is a positive integer. Say that a positive integer is blue if it is not red and is of the form n^{2019}, where n is a positive integer. True or false: Between every two different red positive integers greater than $10^{100,000,000}$, there are at least 2019 blue positive integers. Prove that your answer is correct.
4. Let n be a positive integer. Let d be an integer such that $d \geq n$ and d is a divisor of $\frac{n(n+1)}{2}$. Prove that the set $\{1,2, \ldots, n\}$ can be partitioned into disjoint subsets such that the sum of the numbers in each subset equals d.

