The Advantage Testing Foundation

 Math Prize for Girls at MIT

2019 Olympiad Solutions

Problem 1 Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Prove that

$$
\left|\bigcup_{1 \leq i \leq n} A_{i}\right| \geq \frac{1}{2} \sum_{1 \leq i \leq n}\left|A_{i}\right|-\frac{1}{6} \sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| .
$$

Recall that if S is a finite set, then its cardinality $|S|$ is the number of elements of S.

Solution: Let S be the union of all the A_{i}. Given an element x of S, define its degree $\operatorname{deg}(x)$ to be the number of i such that $x \in A_{i}$. We can express $\sum_{i}\left|A_{i}\right|$ using degrees as follows:

$$
\sum_{i}\left|A_{i}\right|=\left|\left\{(i, x): x \in A_{i}\right\}\right|=\sum_{x \in S} \operatorname{deg}(x) .
$$

Similarly, we can express $\sum_{i<j}\left|A_{i} \cap A_{j}\right|$ as follows:

$$
\sum_{i<j}\left|A_{i} \cap A_{j}\right|=\mid\left\{(i, j, x): i<j \text { and } x \in A_{i} \text { and } x \in A_{j}\right\} \left\lvert\,=\sum_{x \in S}\binom{\operatorname{deg}(x)}{2}\right.
$$

To continue, we will need a simple inequality involving a single integer.
Lemma For every integer d, we have

$$
1 \geq \frac{1}{2} d-\frac{1}{6}\binom{d}{2} .
$$

Proof Either $d \leq 3$ or $d \geq 4$, so $(d-3)(d-4) \geq 0$. Rearranging gives $12 \geq 6 d-d(d-1)$. Dividing by 12 gives the desired inequality.

Given an element x of S, applying the lemma with $d=\operatorname{deg}(x)$ gives

$$
1 \geq \frac{1}{2} \operatorname{deg}(x)-\frac{1}{6}\binom{\operatorname{deg}(x)}{2}
$$

Summing over all x gives

$$
\sum_{x \in S} 1 \geq \frac{1}{2} \sum_{x \in S} \operatorname{deg}(x)-\frac{1}{6} \sum_{x \in S}\binom{\operatorname{deg}(x)}{2}
$$

The first sum is $|S|=\left|\bigcup_{i} A_{i}\right|$. The second sum is $\sum_{i}\left|A_{i}\right|$. The third sum is $\sum_{i<j}\left|A_{i} \cap A_{j}\right|$. Hence we are done.

Problem 2 Let $A B C$ be an equilateral triangle with side length 1. Say that a point X on side $\overline{B C}$ is balanced if there exists a point Y on side $\overline{A C}$ and a point Z on side $\overline{A B}$ such that the triangle $X Y Z$ is a right isosceles triangle with $X Y=X Z$. Find with proof the length of the set of all balanced points on side $\overline{B C}$.

Solution: We will show that the the set of balanced points has length $2-\sqrt{3}$. In particular, we will show that the set of balanced points is the interval of points X on side $\overline{B C}$ such that $\frac{\sqrt{3}-1}{2} \leq B X \leq \frac{3-\sqrt{3}}{2}$.

We will solve the problem with complex numbers. To see why complex numbers are useful here, note that a triangle $X Y Z$ in the complex plane is a right triangle in counterclockwise order with $X Y=Y Z$ if and only if $Z-X=(Y-X) i$. That's because the equation $Z-X=(Y-X) i$ says that the vector $\overrightarrow{X Z}$ is a (counterclockwise) rotation by 90° of the vector $\overrightarrow{X Y}$. Rearranging $Z-X=(Y-X) i$ gives $(1-i) X=Z-Y i$.

Because $A B C$ is an equilateral triangle with side length 1, we can place it in the complex plane so that $A=0, B=1$, and $C=$ cis 60°. In our problem, X is on side $\overline{B C}, Y$ is on side $\overline{A C}$, and Z is on side $\overline{A B}$. So triangle $X Y Z$ is in counterclockwise order.

Let $X=p+q i$ be an arbitrary point in the complex plane, where p and q are real. We will show that there exists a unique pair of points Y on the line $\overleftrightarrow{A C}$ and Z on the line $\overleftrightarrow{A B}$ such that $(1-i) X=Z-Y i$. Because Y is on line $\overleftrightarrow{A C}$, it is of the form $r C=r \operatorname{cis} 60^{\circ}$, where r is real. Because Z is on line $\overleftrightarrow{A B}$, it is of the form $s B=s$, where s is real. The left-hand side of the equation $(1-i) X=Z-Y i$ is

$$
(1-i) X=(1-i)(p+q i)=p+q+(q-p) i
$$

The right-hand side of the equation is

$$
Z-Y i=s-r \operatorname{cis} 60^{\circ}=\frac{\sqrt{3}}{2} r+s-\frac{1}{2} r i .
$$

Comparing real parts and imaginary parts gives the two equations

$$
\begin{aligned}
\frac{\sqrt{3}}{2} r+s & =p+q \\
-\frac{1}{2} r & =q-p
\end{aligned}
$$

Solving this system of equations gives the unique solution $r=2 p-2 q$ and $s=(1-\sqrt{3}) p+(1+\sqrt{3}) q$.

In our problem, X is on side $\overline{B C}$. In other words, X is of the form $(1-t) B+t C=1-t+t$ cis 60°, where $t=B X$. So $X=p+q i$, where $p=1-\frac{1}{2} t$ and $q=\frac{\sqrt{3}}{2} t$. By the previous paragraph, we have $r=2-(1+\sqrt{3}) t$ and $s=1-\sqrt{3}+(1+\sqrt{3}) t$. For Y to be on side $\overline{A C}$ is equivalent to $0 \leq r \leq 1$, which means $\frac{\sqrt{3}-1}{2} \leq t \leq \sqrt{3}-1$. For Z to be on side $\overline{A B}$ is equivalent to $0 \leq s \leq 1$, which means $2-\sqrt{3} \leq t \leq \frac{3-\sqrt{3}}{2}$. Hence Y on $\overline{A C}$ and Z on $\overline{A B}$ is equivalent to $\frac{\sqrt{3}-1}{2} \leq t \leq \frac{3-\sqrt{3}}{2}$. In other words, X is balanced if and only if $\frac{\sqrt{3}-1}{2} \leq B X \leq \frac{3-\sqrt{3}}{2}$.

Note: This problem was proposed by Oleg Kryzhanovsky.
Problem 3 Say that a positive integer is red if it is of the form n^{2020}, where n is a positive integer. Say that a positive integer is blue if it is not red and is of the form n^{2019}, where n is a positive integer. True or false: Between every two different red positive integers greater than $10^{100,000,000}$, there are at least 2019 blue positive integers. Prove that your answer is correct.

Solution: The answer is True. Suppose we are given two different red positive integers greater than $10^{100,000,000}$. We will show that there are at least 2019 blue positive integers between them. Without loss of generality, we may assume that the two red integers are consecutive red integers, say n^{2020} and $(n+1)^{2020}$. Because they are greater than $10^{100,000,000}$, we have $n>10^{10,000}$.

Lemma If $x>10^{10,000}$, then $(x+1)^{2020 / 2019}>x^{2020 / 2019}+2019$.

Proof If $x>10^{10,000}$, then

$$
\begin{aligned}
(x+1)^{2020 / 2019} & =(x+1)(x+1)^{1 / 2019} \\
& >(x+1) x^{1 / 2019} \\
& =x^{2020 / 2019}+x^{1 / 2019} \\
& >x^{2020 / 2019}+2019
\end{aligned}
$$

Applying the lemma to $x=n$, we have $(n+1)^{2020 / 2019}>n^{2020 / 2019}+2019$. In other words, the length of the open interval ($\left.n^{2020 / 2019},(n+1)^{2020 / 2019}\right)$ is greater than 2019. So there are at least 2019 integers strictly between $n^{2020 / 2019}$ and $(n+1)^{2020 / 2019}$. Taking 2019th powers, we see that there are at least 2019 integers of the form m^{2019} (where m is a positive integer) strictly between n^{2020} and $(n+1)^{2020}$. Being strictly between two consecutive red integers, those at least 2019 integers of the form m^{2019} can't be red, and so they are blue. Hence we are done.

Note: This problem was proposed by Oleg Kryzhanovsky.
Problem 4 Let n be a positive integer. Let d be an integer such that $d \geq n$ and d is a divisor of $\frac{n(n+1)}{2}$. Prove that the set $\{1,2, \ldots, n\}$ can be partitioned into disjoint subsets such that the sum of the numbers in each subset equals d.

Solution: Given integers a and b, define $a . . b$ to be the set $\{a, a+1, \ldots, b\}$. (If $b<a$, then $a . . b$ is the empty set.) Given integers n, c, and d, define a (n, c, d)-partition to be a partition of the set $0 \ldots n$ into c subsets, each with sum d. The distinction between $0 \ldots n$ and $1 \ldots n$ doesn't matter for our problem, because we can delete or insert the 0 without changing any sum.

We will start with three lemmas that show how to construct new partitions from smaller ones.

Lemma 1 Let n, c, and d be integers such that $2 c \leq n+1$. If there is a $(n-2 c, c, d-2 n+2 c-1)$ partition, then there is a (n, c, d) partition.

Proof Suppose there is a $(n-2 c, c, d-2 n+2 c-1)$ partition. There is also a partition of the set $n-2 c+1 \ldots n$ into c subsets, each with sum $2 n-2 c+1$: namely, the c pairs $\{n-2 c+1, n\},\{n-2 c+2, n-1\}, \ldots,\{n-c+1, n-c\}$. Combining each of the c subsets of the first partition with one of the c subsets of the second partition gives the desired (n, c, d) partition.

Lemma 2 Let n, c, and d be integers such that d is odd and $n \leq d \leq 2 n+1$. If there is a $\left(d-n-1, c-n+\frac{d-1}{2}, d\right)$ partition, then there is a (n, c, d) partition.

Proof Suppose there is a $\left(d-n-1, c-n+\frac{d-1}{2}, d\right)$ partition. There is also a partition of the set $d-n \ldots n$ into $n-\frac{d-1}{2}$ subsets, each with sum d : namely, the pairs $\{d-n, n\},\{d-n+1, n-1\}, \ldots,\left\{\frac{d-1}{2}, \frac{d+1}{2}\right\}$. The union of the two partitions is the desired (n, c, d) partition.

Lemma 3 Let n, c, and d be integers such that d is even and $n \leq d \leq 2 n$. If there is a $\left(d-n-1,2 c-2 n+d-1, \frac{d}{2}\right)$ partition, then there is a (n, c, d) partition.

Proof Suppose there is a $\left(d-n-1,2 c-2 n+d-1, \frac{d}{2}\right)$ partition. By including the singleton set $\left\{\frac{d}{2}\right\}$, we obtain a partition of $0 \ldots d-n-1 \cup\left\{\frac{d}{2}\right\}$ into $2 c-2 n+d$ subsets, each with sum $\frac{d}{2}$. By pairing up these subsets, we obtain a partition of $0 \ldots d-n-1 \cup\left\{\frac{d}{2}\right\}$ into $c-n+\frac{d}{2}$ subsets, each with sum d.

There is also a partition of the set $d-n \ldots n$, excluding $\frac{d}{2}$, into $n-\frac{d}{2}$ subsets, each with sum d : namely, the pairs $\{d-n, n\},\{d-n+1, n-1\}$, $\ldots,\left\{\frac{d}{2}-1, \frac{d}{2}+1\right\}$. The union of this partition and the final partition of the previous paragraph is the desired (n, c, d) partition.

Given a finite set S of integers, define $\operatorname{sum}(S)$ to be the sum of the elements of S. For example, $\operatorname{sum}(1 \ldots n)$ is $\frac{n(n+1)}{2}$.

We will now prove the following theorem, which is a restatement of the original problem.

Theorem Let n, c, and d be integers such that $n>0, d \geq n$, and $c d=$ $\operatorname{sum}(1 \ldots n)$. Then there is a (n, c, d) partition.

Proof The proof is by strong induction on n.
We will divide the proof into five cases. The first case is $d=n$. The second case is $d=n+1$. The third case is $n+1<d \leq 2 n$ and d odd. The fourth case is $n+1<d \leq 2 n$ and d even. The fifth case is $d>2 n$.

First, let's handle the case $d=n$. Because $c d=\operatorname{sum}(1 \ldots n)$, we have $c=\frac{n+1}{2}$. There is trivially a $(-1, c, 0)$ partition. Hence, by Lemma 1, there is a (n, c, d) partition.

Second, let's handle the case $d=n+1$. Because $c d=\operatorname{sum}(1 \ldots n)$, we have $c=\frac{n}{2}$. There is trivially a $(0, c, 0)$ partition. Hence, by Lemma 1 , there is a (n, c, d) partition.

Third, let's handle the case $n+1<d \leq 2 n$ and d odd. Define $n^{\prime}=d-n-1$ and $c^{\prime}=c-n+\frac{d-1}{2}$. Because $d \leq 2 n$, we have $n^{\prime}<n$ and so $d>n>n^{\prime}$. Because $d>n+1$, we have $n^{\prime}>0$. We can check that $c^{\prime} d=\operatorname{sum}\left(1 \ldots n^{\prime}\right)$ as follows:

$$
c^{\prime} d=c d-\left(n-\frac{d-1}{2}\right) d=\operatorname{sum}(1 \ldots n)-\operatorname{sum}(d-n \ldots n)=\operatorname{sum}\left(1 \ldots n^{\prime}\right)
$$

By induction, there is a $\left(n^{\prime}, c^{\prime}, d\right)$ partition. Hence, by Lemma 2, there is a (n, c, d) partition.

Fourth, let's handle the case $n+1<d \leq 2 n$ and d even. Define $n^{\prime}=$ $d-n-1, c^{\prime}=2 c-2 n+d-1$, and $d^{\prime}=\frac{d}{2}$. Because $d \leq 2 n$, we have $n \geq d^{\prime}>n^{\prime}$. As in the previous case, we have $n^{\prime}>0$ and $c^{\prime} d^{\prime}=\operatorname{sum}\left(1 \ldots n^{\prime}\right)$. By induction, there is a $\left(n^{\prime}, c^{\prime}, d^{\prime}\right)$ partition. Hence, by Lemma 3 , there is a (n, c, d) partition.

Fifth and finally, let's handle the case $d>2 n$. Define $n^{\prime}=n-2 c$ and $d^{\prime}=d-2 n+2 c-1$. Because $c>0$, we have $n^{\prime}<n$. Because $d>2 n$ and $c d=\operatorname{sum}(1 \ldots n)$, we have $4 c \leq n$, which implies $2 c \leq n^{\prime}$. Thus $n^{\prime}>0$. Because $c d=\operatorname{sum}(1 \ldots n)$ and $c(2 n-2 c+1)=\operatorname{sum}(n-2 c+1 \ldots n)$, we have $c d^{\prime}=\operatorname{sum}\left(1 \ldots n^{\prime}\right)$. Because $2 c \leq n^{\prime}$ and $c d^{\prime}=\operatorname{sum}\left(1 \ldots n^{\prime}\right)$, we have $d^{\prime}>n^{\prime}$. By induction, there is a $\left(n^{\prime}, c, d^{\prime}\right)$ partition. Hence, by Lemma 1 , there is a (n, c, d) partition.

