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Problem 1 Let A1, A2, . . . , An be finite sets. Prove that∣∣∣ ⋃
1≤i≤n

Ai

∣∣∣ ≥ 1

2

∑
1≤i≤n

|Ai| −
1

6

∑
1≤i<j≤n

|Ai ∩ Aj| .

Recall that if S is a finite set, then its cardinality |S| is the number of elements
of S.

Solution: Let S be the union of all the Ai. Given an element x of S, define
its degree deg(x) to be the number of i such that x ∈ Ai. We can express∑

i|Ai| using degrees as follows:∑
i

|Ai| = |{(i, x) : x ∈ Ai}| =
∑
x∈S

deg(x).

Similarly, we can express
∑

i<j|Ai ∩ Aj| as follows:

∑
i<j

|Ai ∩ Aj| = |{(i, j, x) : i < j and x ∈ Ai and x ∈ Aj}| =
∑
x∈S

(
deg(x)

2

)
.

To continue, we will need a simple inequality involving a single integer.

Lemma For every integer d, we have

1 ≥ 1

2
d− 1

6

(
d

2

)
.

Proof Either d ≤ 3 or d ≥ 4, so (d − 3)(d − 4) ≥ 0. Rearranging gives
12 ≥ 6d− d(d− 1). Dividing by 12 gives the desired inequality. �
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Given an element x of S, applying the lemma with d = deg(x) gives

1 ≥ 1

2
deg(x)− 1

6

(
deg(x)

2

)
.

Summing over all x gives∑
x∈S

1 ≥ 1

2

∑
x∈S

deg(x)− 1

6

∑
x∈S

(
deg(x)

2

)
.

The first sum is |S| =
∣∣⋃

iAi

∣∣. The second sum is
∑

i|Ai|. The third sum is∑
i<j|Ai ∩ Aj|. Hence we are done.

Problem 2 Let ABC be an equilateral triangle with side length 1. Say that
a point X on side BC is balanced if there exists a point Y on side AC and a
point Z on side AB such that the triangle XY Z is a right isosceles triangle
with XY = XZ. Find with proof the length of the set of all balanced points
on side BC.

Solution: We will show that the the set of balanced points has length 2−
√

3.
In particular, we will show that the set of balanced points is the interval of
points X on side BC such that

√
3−1
2
≤ BX ≤ 3−

√
3

2
.

We will solve the problem with complex numbers. To see why complex
numbers are useful here, note that a triangle XY Z in the complex plane
is a right triangle in counterclockwise order with XY = Y Z if and only if
Z − X = (Y − X)i. That’s because the equation Z − X = (Y − X)i says

that the vector
−−→
XZ is a (counterclockwise) rotation by 90◦ of the vector

−−→
XY .

Rearranging Z −X = (Y −X)i gives (1− i)X = Z − Y i.
Because ABC is an equilateral triangle with side length 1, we can place it

in the complex plane so that A = 0, B = 1, and C = cis 60◦. In our problem,
X is on side BC, Y is on side AC, and Z is on side AB. So triangle XY Z
is in counterclockwise order.

Let X = p + qi be an arbitrary point in the complex plane, where p and
q are real. We will show that there exists a unique pair of points Y on the

line
←→
AC and Z on the line

←→
AB such that (1 − i)X = Z − Y i. Because Y is

on line
←→
AC, it is of the form rC = r cis 60◦, where r is real. Because Z is on

line
←→
AB, it is of the form sB = s, where s is real. The left-hand side of the

equation (1− i)X = Z − Y i is

(1− i)X = (1− i)(p + qi) = p + q + (q − p)i.
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The right-hand side of the equation is

Z − Y i = s− r cis 60◦ =

√
3

2
r + s− 1

2
ri.

Comparing real parts and imaginary parts gives the two equations

√
3

2
r + s = p + q

−1

2
r = q − p.

Solving this system of equations gives the unique solution r = 2p − 2q and
s = (1−

√
3)p + (1 +

√
3)q.

In our problem, X is on side BC. In other words, X is of the form
(1−t)B+tC = 1−t+t cis 60◦, where t = BX. So X = p+qi, where p = 1− 1

2
t

and q =
√
3
2
t. By the previous paragraph, we have r = 2 − (1 +

√
3)t and

s = 1−
√

3 + (1 +
√

3)t. For Y to be on side AC is equivalent to 0 ≤ r ≤ 1,

which means
√
3−1
2
≤ t ≤

√
3 − 1. For Z to be on side AB is equivalent to

0 ≤ s ≤ 1, which means 2−
√

3 ≤ t ≤ 3−
√
3

2
. Hence Y on AC and Z on AB

is equivalent to
√
3−1
2
≤ t ≤ 3−

√
3

2
. In other words, X is balanced if and only

if
√
3−1
2
≤ BX ≤ 3−

√
3

2
.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 3 Say that a positive integer is red if it is of the form n2020, where
n is a positive integer. Say that a positive integer is blue if it is not red and
is of the form n2019, where n is a positive integer. True or false: Between
every two different red positive integers greater than 10100,000,000, there are
at least 2019 blue positive integers. Prove that your answer is correct.

Solution: The answer is True. Suppose we are given two different red
positive integers greater than 10100,000,000. We will show that there are at
least 2019 blue positive integers between them. Without loss of generality,
we may assume that the two red integers are consecutive red integers, say
n2020 and (n + 1)2020. Because they are greater than 10100,000,000, we have
n > 1010,000.

Lemma If x > 1010,000, then (x + 1)2020/2019 > x2020/2019 + 2019.
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Proof If x > 1010,000, then

(x + 1)2020/2019 = (x + 1)(x + 1)1/2019

> (x + 1)x1/2019

= x2020/2019 + x1/2019

> x2020/2019 + 2019. �

Applying the lemma to x = n, we have (n+1)2020/2019 > n2020/2019+2019.
In other words, the length of the open interval (n2020/2019, (n + 1)2020/2019)
is greater than 2019. So there are at least 2019 integers strictly between
n2020/2019 and (n+1)2020/2019. Taking 2019th powers, we see that there are at
least 2019 integers of the form m2019 (where m is a positive integer) strictly
between n2020 and (n + 1)2020. Being strictly between two consecutive red
integers, those at least 2019 integers of the form m2019 can’t be red, and so
they are blue. Hence we are done.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 4 Let n be a positive integer. Let d be an integer such that d ≥ n
and d is a divisor of n(n+1)

2
. Prove that the set {1, 2, . . . , n} can be partitioned

into disjoint subsets such that the sum of the numbers in each subset equals d.

Solution: Given integers a and b, define a . . b to be the set {a, a+ 1, . . . , b}.
(If b < a, then a . . b is the empty set.) Given integers n, c, and d, define
a (n, c, d)-partition to be a partition of the set 0 . . n into c subsets, each
with sum d. The distinction between 0 . . n and 1 . . n doesn’t matter for our
problem, because we can delete or insert the 0 without changing any sum.

We will start with three lemmas that show how to construct new parti-
tions from smaller ones.

Lemma 1 Let n, c, and d be integers such that 2c ≤ n + 1. If there is a
(n− 2c, c, d− 2n + 2c− 1) partition, then there is a (n, c, d) partition.

Proof Suppose there is a (n−2c, c, d−2n+ 2c−1) partition. There is also
a partition of the set n− 2c + 1 . . n into c subsets, each with sum 2n−2c+1:
namely, the c pairs {n−2c+ 1, n}, {n−2c+ 2, n−1}, . . . , {n− c+ 1, n− c}.
Combining each of the c subsets of the first partition with one of the c subsets
of the second partition gives the desired (n, c, d) partition. �
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Lemma 2 Let n, c, and d be integers such that d is odd and n ≤ d ≤ 2n+1.
If there is a (d−n−1, c−n+ d−1

2
, d) partition, then there is a (n, c, d) partition.

Proof Suppose there is a (d−n−1, c−n+ d−1
2
, d) partition. There is also a

partition of the set d− n . . n into n− d−1
2

subsets, each with sum d: namely,
the pairs {d−n, n}, {d−n+ 1, n− 1}, . . . , {d−1

2
, d+1

2
}. The union of the two

partitions is the desired (n, c, d) partition. �

Lemma 3 Let n, c, and d be integers such that d is even and n ≤ d ≤ 2n.
If there is a (d− n− 1, 2c− 2n + d− 1, d

2
) partition, then there is a (n, c, d)

partition.

Proof Suppose there is a (d − n − 1, 2c − 2n + d − 1, d
2
) partition. By

including the singleton set {d
2
}, we obtain a partition of 0 . . d− n− 1 ∪ {d

2
}

into 2c− 2n + d subsets, each with sum d
2
. By pairing up these subsets, we

obtain a partition of 0 . . d− n− 1 ∪ {d
2
} into c − n + d

2
subsets, each with

sum d.
There is also a partition of the set d− n . . n, excluding d

2
, into n − d

2

subsets, each with sum d: namely, the pairs {d − n, n}, {d − n + 1, n − 1},
. . . , {d

2
− 1, d

2
+ 1}. The union of this partition and the final partition of the

previous paragraph is the desired (n, c, d) partition. �

Given a finite set S of integers, define sum(S) to be the sum of the

elements of S. For example, sum(1 . . n) is n(n+1)
2

.
We will now prove the following theorem, which is a restatement of the

original problem.

Theorem Let n, c, and d be integers such that n > 0, d ≥ n, and cd =
sum(1 . . n). Then there is a (n, c, d) partition.

Proof The proof is by strong induction on n.
We will divide the proof into five cases. The first case is d = n. The

second case is d = n + 1. The third case is n + 1 < d ≤ 2n and d odd. The
fourth case is n + 1 < d ≤ 2n and d even. The fifth case is d > 2n.

First, let’s handle the case d = n. Because cd = sum(1 . . n), we have
c = n+1

2
. There is trivially a (−1, c, 0) partition. Hence, by Lemma 1, there

is a (n, c, d) partition.
Second, let’s handle the case d = n + 1. Because cd = sum(1 . . n), we

have c = n
2
. There is trivially a (0, c, 0) partition. Hence, by Lemma 1, there

is a (n, c, d) partition.
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Third, let’s handle the case n+1 < d ≤ 2n and d odd. Define n′ = d−n−1
and c′ = c − n + d−1

2
. Because d ≤ 2n, we have n′ < n and so d > n > n′.

Because d > n + 1, we have n′ > 0. We can check that c′d = sum(1 . . n′) as
follows:

c′d = cd−
(
n− d− 1

2

)
d = sum(1 . . n)− sum(d− n . . n) = sum(1 . . n′).

By induction, there is a (n′, c′, d) partition. Hence, by Lemma 2, there is a
(n, c, d) partition.

Fourth, let’s handle the case n + 1 < d ≤ 2n and d even. Define n′ =
d − n − 1, c′ = 2c − 2n + d − 1, and d′ = d

2
. Because d ≤ 2n, we have

n ≥ d′ > n′. As in the previous case, we have n′ > 0 and c′d′ = sum(1 . . n′).
By induction, there is a (n′, c′, d′) partition. Hence, by Lemma 3, there is a
(n, c, d) partition.

Fifth and finally, let’s handle the case d > 2n. Define n′ = n − 2c and
d′ = d − 2n + 2c − 1. Because c > 0, we have n′ < n. Because d > 2n
and cd = sum(1 . . n), we have 4c ≤ n, which implies 2c ≤ n′. Thus n′ > 0.
Because cd = sum(1 . . n) and c(2n− 2c+ 1) = sum(n− 2c + 1 . . n), we have
cd′ = sum(1 . . n′). Because 2c ≤ n′ and cd′ = sum(1 . . n′), we have d′ > n′.
By induction, there is a (n′, c, d′) partition. Hence, by Lemma 1, there is a
(n, c, d) partition. �
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