THE ADVANTAGE TESTING FOUNDATION

2019 Olympiad Solutions

Problem 1 Let A_1, A_2, \ldots, A_n be finite sets. Prove that

$$\left| \bigcup_{1 \le i \le n} A_i \right| \ge \frac{1}{2} \sum_{1 \le i \le n} |A_i| - \frac{1}{6} \sum_{1 \le i < j \le n} |A_i \cap A_j|.$$

Recall that if S is a finite set, then its cardinality |S| is the number of elements of S.

Solution: Let S be the union of all the A_i . Given an element x of S, define its *degree* deg(x) to be the number of i such that $x \in A_i$. We can express $\sum_i |A_i|$ using degrees as follows:

$$\sum_{i} |A_i| = |\{(i, x) : x \in A_i\}| = \sum_{x \in S} \deg(x).$$

Similarly, we can express $\sum_{i < j} |A_i \cap A_j|$ as follows:

$$\sum_{i < j} |A_i \cap A_j| = |\{(i, j, x) : i < j \text{ and } x \in A_i \text{ and } x \in A_j\}| = \sum_{x \in S} \binom{\deg(x)}{2}.$$

To continue, we will need a simple inequality involving a single integer.

Lemma For every integer d, we have

$$1 \ge \frac{1}{2}d - \frac{1}{6}\binom{d}{2}.$$

PROOF Either $d \leq 3$ or $d \geq 4$, so $(d-3)(d-4) \geq 0$. Rearranging gives $12 \geq 6d - d(d-1)$. Dividing by 12 gives the desired inequality.

Given an element x of S, applying the lemma with $d = \deg(x)$ gives

$$1 \ge \frac{1}{2} \operatorname{deg}(x) - \frac{1}{6} \binom{\operatorname{deg}(x)}{2}.$$

Summing over all x gives

$$\sum_{x \in S} 1 \ge \frac{1}{2} \sum_{x \in S} \deg(x) - \frac{1}{6} \sum_{x \in S} \binom{\deg(x)}{2}.$$

The first sum is $|S| = |\bigcup_i A_i|$. The second sum is $\sum_i |A_i|$. The third sum is $\sum_{i < j} |A_i \cap A_j|$. Hence we are done.

Problem 2 Let ABC be an equilateral triangle with side length 1. Say that a point X on side \overline{BC} is *balanced* if there exists a point Y on side \overline{AC} and a point Z on side \overline{AB} such that the triangle XYZ is a right isosceles triangle with XY = XZ. Find with proof the length of the set of all balanced points on side \overline{BC} .

Solution: We will show that the set of balanced points has length $2-\sqrt{3}$. In particular, we will show that the set of balanced points is the interval of points X on side \overline{BC} such that $\frac{\sqrt{3}-1}{2} \leq BX \leq \frac{3-\sqrt{3}}{2}$.

We will solve the problem with complex numbers. To see why complex numbers are useful here, note that a triangle XYZ in the complex plane is a right triangle in counterclockwise order with XY = YZ if and only if Z - X = (Y - X)i. That's because the equation Z - X = (Y - X)i says that the vector \overrightarrow{XZ} is a (counterclockwise) rotation by 90° of the vector \overrightarrow{XY} . Rearranging Z - X = (Y - X)i gives (1 - i)X = Z - Yi.

Because ABC is an equilateral triangle with side length 1, we can place it in the complex plane so that A = 0, B = 1, and $C = \operatorname{cis} 60^\circ$. In our problem, X is on side \overline{BC} , Y is on side \overline{AC} , and Z is on side \overline{AB} . So triangle XYZis in counterclockwise order.

Let X = p + qi be an arbitrary point in the complex plane, where p and q are real. We will show that there exists a unique pair of points Y on the line \overrightarrow{AC} and Z on the line \overrightarrow{AB} such that (1 - i)X = Z - Yi. Because Y is on line \overrightarrow{AC} , it is of the form $rC = r \operatorname{cis} 60^\circ$, where r is real. Because Z is on line \overrightarrow{AB} , it is of the form sB = s, where s is real. The left-hand side of the equation (1 - i)X = Z - Yi is

$$(1-i)X = (1-i)(p+qi) = p+q+(q-p)i.$$

The right-hand side of the equation is

$$Z - Yi = s - r \operatorname{cis} 60^{\circ} = \frac{\sqrt{3}}{2}r + s - \frac{1}{2}ri.$$

Comparing real parts and imaginary parts gives the two equations

$$\frac{\sqrt{3}}{2}r + s = p + q$$
$$-\frac{1}{2}r = q - p.$$

Solving this system of equations gives the unique solution r = 2p - 2q and $s = (1 - \sqrt{3})p + (1 + \sqrt{3})q.$

In our problem, X is on side \overline{BC} . In other words, X is of the form $(1-t)B+tC = 1-t+t \operatorname{cis} 60^\circ$, where t = BX. So X = p+qi, where $p = 1-\frac{1}{2}t$ and $q = \frac{\sqrt{3}}{2}t$. By the previous paragraph, we have $r = 2 - (1 + \sqrt{3})t$ and $s = 1 - \sqrt{3} + (1 + \sqrt{3})t$. For Y to be on side \overline{AC} is equivalent to $0 \le r \le 1$, which means $\frac{\sqrt{3}-1}{2} \leq t \leq \sqrt{3}-1$. For Z to be on side \overline{AB} is equivalent to which means $\frac{1}{2} = \frac{1}{2} \cdot \frac{$

Problem 3 Say that a positive integer is *red* if it is of the form n^{2020} , where n is a positive integer. Say that a positive integer is *blue* if it is not red and is of the form n^{2019} , where n is a positive integer. True or false: Between every two different red positive integers greater than $10^{100,000,000}$, there are at least 2019 blue positive integers. Prove that your answer is correct.

Solution: The answer is True. Suppose we are given two different red positive integers greater than $10^{100,000,000}$. We will show that there are at least 2019 blue positive integers between them. Without loss of generality, we may assume that the two red integers are consecutive red integers, say n^{2020} and $(n+1)^{2020}$. Because they are greater than $10^{100,000,000}$, we have $n > 10^{10,000}$.

Lemma If $x > 10^{10,000}$, then $(x + 1)^{2020/2019} > x^{2020/2019} + 2019$.

PROOF If $x > 10^{10,000}$, then

$$(x+1)^{2020/2019} = (x+1)(x+1)^{1/2019}$$

> $(x+1)x^{1/2019}$
= $x^{2020/2019} + x^{1/2019}$
> $x^{2020/2019} + 2019.$

Applying the lemma to x = n, we have $(n+1)^{2020/2019} > n^{2020/2019} + 2019$. In other words, the length of the open interval $(n^{2020/2019}, (n+1)^{2020/2019})$ is greater than 2019. So there are at least 2019 integers strictly between $n^{2020/2019}$ and $(n+1)^{2020/2019}$. Taking 2019th powers, we see that there are at least 2019 integers of the form m^{2019} (where *m* is a positive integer) strictly between n^{2020} and $(n+1)^{2020}$. Being strictly between two consecutive red integers, those at least 2019 integers of the form m^{2019} can't be red, and so they are blue. Hence we are done.

Note: This problem was proposed by Oleg Kryzhanovsky.

Problem 4 Let *n* be a positive integer. Let *d* be an integer such that $d \ge n$ and *d* is a divisor of $\frac{n(n+1)}{2}$. Prove that the set $\{1, 2, \ldots, n\}$ can be partitioned into disjoint subsets such that the sum of the numbers in each subset equals *d*.

Solution: Given integers a and b, define $a \, .. b$ to be the set $\{a, a + 1, ..., b\}$. (If b < a, then $a \, .. b$ is the empty set.) Given integers n, c, and d, define a (n, c, d)-partition to be a partition of the set $0 \, .. n$ into c subsets, each with sum d. The distinction between $0 \, .. n$ and $1 \, .. n$ doesn't matter for our problem, because we can delete or insert the 0 without changing any sum.

We will start with three lemmas that show how to construct new partitions from smaller ones.

Lemma 1 Let n, c, and d be integers such that $2c \le n+1$. If there is a (n-2c, c, d-2n+2c-1) partition, then there is a (n, c, d) partition.

PROOF Suppose there is a (n-2c, c, d-2n+2c-1) partition. There is also a partition of the set $n-2c+1 \dots n$ into c subsets, each with sum 2n-2c+1: namely, the c pairs $\{n-2c+1, n\}, \{n-2c+2, n-1\}, \dots, \{n-c+1, n-c\}$. Combining each of the c subsets of the first partition with one of the c subsets of the second partition gives the desired (n, c, d) partition. **Lemma 2** Let n, c, and d be integers such that d is odd and $n \le d \le 2n+1$. If there is a $(d-n-1, c-n+\frac{d-1}{2}, d)$ partition, then there is a (n, c, d) partition.

PROOF Suppose there is a $(d-n-1, c-n+\frac{d-1}{2}, d)$ partition. There is also a partition of the set $d-n \dots n$ into $n-\frac{d-1}{2}$ subsets, each with sum d: namely, the pairs $\{d-n,n\}, \{d-n+1,n-1\}, \dots, \{\frac{d-1}{2}, \frac{d+1}{2}\}$. The union of the two partitions is the desired (n,c,d) partition.

Lemma 3 Let n, c, and d be integers such that d is even and $n \le d \le 2n$. If there is a $(d - n - 1, 2c - 2n + d - 1, \frac{d}{2})$ partition, then there is a (n, c, d) partition.

PROOF Suppose there is a $(d - n - 1, 2c - 2n + d - 1, \frac{d}{2})$ partition. By including the singleton set $\{\frac{d}{2}\}$, we obtain a partition of $0 \dots d - n - 1 \cup \{\frac{d}{2}\}$ into 2c - 2n + d subsets, each with sum $\frac{d}{2}$. By pairing up these subsets, we obtain a partition of $0 \dots d - n - 1 \cup \{\frac{d}{2}\}$ into $c - n + \frac{d}{2}$ subsets, each with sum d.

There is also a partition of the set $d - n \dots n$, excluding $\frac{d}{2}$, into $n - \frac{d}{2}$ subsets, each with sum d: namely, the pairs $\{d - n, n\}, \{d - n + 1, n - 1\}, \dots, \{\frac{d}{2} - 1, \frac{d}{2} + 1\}$. The union of this partition and the final partition of the previous paragraph is the desired (n, c, d) partition.

Given a finite set S of integers, define sum(S) to be the sum of the elements of S. For example, sum(1..n) is $\frac{n(n+1)}{2}$.

We will now prove the following theorem, which is a restatement of the original problem.

Theorem Let n, c, and d be integers such that $n > 0, d \ge n$, and cd = sum(1..n). Then there is a (n, c, d) partition.

PROOF The proof is by strong induction on n.

We will divide the proof into five cases. The first case is d = n. The second case is d = n + 1. The third case is $n + 1 < d \leq 2n$ and d odd. The fourth case is $n + 1 < d \leq 2n$ and d even. The fifth case is d > 2n.

First, let's handle the case d = n. Because cd = sum(1..n), we have $c = \frac{n+1}{2}$. There is trivially a (-1, c, 0) partition. Hence, by Lemma 1, there is a (n, c, d) partition.

Second, let's handle the case d = n + 1. Because cd = sum(1..n), we have $c = \frac{n}{2}$. There is trivially a (0, c, 0) partition. Hence, by Lemma 1, there is a (n, c, d) partition.

Third, let's handle the case $n+1 < d \leq 2n$ and d odd. Define n' = d-n-1and $c' = c - n + \frac{d-1}{2}$. Because $d \leq 2n$, we have n' < n and so d > n > n'. Because d > n + 1, we have n' > 0. We can check that $c'd = \operatorname{sum}(1 \dots n')$ as follows:

$$c'd = cd - \left(n - \frac{d-1}{2}\right)d = \operatorname{sum}(1 \dots n) - \operatorname{sum}(d - n \dots n) = \operatorname{sum}(1 \dots n').$$

By induction, there is a (n', c', d) partition. Hence, by Lemma 2, there is a (n, c, d) partition.

Fourth, let's handle the case $n + 1 < d \leq 2n$ and d even. Define n' = d - n - 1, c' = 2c - 2n + d - 1, and $d' = \frac{d}{2}$. Because $d \leq 2n$, we have $n \geq d' > n'$. As in the previous case, we have n' > 0 and $c'd' = \operatorname{sum}(1 \dots n')$. By induction, there is a (n', c', d') partition. Hence, by Lemma 3, there is a (n, c, d) partition.

Fifth and finally, let's handle the case d > 2n. Define n' = n - 2c and d' = d - 2n + 2c - 1. Because c > 0, we have n' < n. Because d > 2n and $cd = \operatorname{sum}(1 \dots n)$, we have $4c \le n$, which implies $2c \le n'$. Thus n' > 0. Because $cd = \operatorname{sum}(1 \dots n)$ and $c(2n - 2c + 1) = \operatorname{sum}(n - 2c + 1 \dots n)$, we have $cd' = \operatorname{sum}(1 \dots n')$. Because $2c \le n'$ and $cd' = \operatorname{sum}(1 \dots n')$, we have d' > n'. By induction, there is a (n', c, d') partition. Hence, by Lemma 1, there is a (n, c, d) partition.