Math Prize for Girls Olympiad

Advantage Testing Foundation/Jane Street

Time Limit: 4 hours

Friday, December 2, 2022

- 1. Let a, b, c be positive integers with $a \leq 10$. Suppose the parabola $y = ax^2 + bx + c$ meets the x-axis at two distinct points A and B. Given that the length of \overline{AB} is irrational, determine, with proof, the smallest possible value of this length, across all such choices of (a, b, c).
- 2. Determine, with proof, whether or not there exists a non-isosceles trapezoid ABCD such that the lengths AC and BD both lie in the set $\{DA + AB, AB + BC, BC + CD, CD + DA, AB + CD, BC + DA\}$.
- 3. Serena has written 20 copies of the number 1 on a board. In a move, she is allowed to
 - erase two of the numbers and replace them with their sum, or
 - erase one number and replace it with its reciprocal.

Whenever a fraction appears on the board, Serena writes it in simplest form. Prove that Serena can never write a fraction less than 1 whose numerator is over 9000, regardless of the number of moves she makes.

4. Let n > 1 be an integer. Let A denote the set of divisors of n that are less than \sqrt{n} . Let B denote the set of divisors of n that are greater than \sqrt{n} . Prove that there exists a bijective function $f: A \to B$ such that a divides f(a) for all $a \in A$.

(We say f is *bijective* if for every $b \in B$ there exists a unique $a \in A$ with f(a) = b.)