# Math Prize for Girls Olympiad 

Advantage Testing Foundation/Jane Street
Time Limit: 4 hours
Friday, December 2, 2022

1. Let $a, b, c$ be positive integers with $a \leq 10$. Suppose the parabola $y=a x^{2}+b x+c$ meets the $x$-axis at two distinct points $A$ and $B$. Given that the length of $\overline{A B}$ is irrational, determine, with proof, the smallest possible value of this length, across all such choices of $(a, b, c)$.
2. Determine, with proof, whether or not there exists a non-isosceles trapezoid $A B C D$ such that the lengths $A C$ and $B D$ both lie in the set $\{D A+A B, A B+B C, B C+C D, C D+D A, A B+C D, B C+D A\}$.
3. Serena has written 20 copies of the number 1 on a board. In a move, she is allowed to

- erase two of the numbers and replace them with their sum, or
- erase one number and replace it with its reciprocal.

Whenever a fraction appears on the board, Serena writes it in simplest form. Prove that Serena can never write a fraction less than 1 whose numerator is over 9000 , regardless of the number of moves she makes.
4. Let $n>1$ be an integer. Let $A$ denote the set of divisors of $n$ that are less than $\sqrt{n}$. Let $B$ denote the set of divisors of $n$ that are greater than $\sqrt{n}$. Prove that there exists a bijective function $f: A \rightarrow B$ such that $a$ divides $f(a)$ for all $a \in A$.
(We say $f$ is bijective if for every $b \in B$ there exists a unique $a \in A$ with $f(a)=b$.)

