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§1 Problem 1

The answer is
√
13
9 , achieved with the quadratic 9x2 + 7x+ 1.

First solution Let D = b2 − 4ac. By the quadratic formula, the two roots are given by

r1 =
−b+

√
b2 − 4ac

2a

r2 =
−b−

√
b2 − 4ac

2a

=⇒ AB = r1 − r2 =

√
b2 − 4ac

2a
=

√
D

2a
.

At this point, we note that (a, b, c) = (9, 7, 1) gives D = 13, and hence the bound we
claimed is achievable.

We now proceed to show
√
13
9 is best possible. In general we have D ≡ 0 (mod 4) or

D ≡ 1 (mod 4), and D is not a perfect square. So it suffices to analyze five cases: D = 5,
D = 8, D = 12, D = 13, and D ≥ 17.

• In the first case, if D = 5, then it follows that b2 ≡ 5 (mod 4a).
Since 5 is not a square modulo 8 (the squares are 0, 1, 4), it follows a is odd.
Since 5 is not a square modulo 3 (the squares are 0 and 1), it follows 3 - a.
Since 5 is not a square modulo 7 (the squares are 0, 1, 2, 4), it follows 7 - a.

This means if D = 5 then a ≤ 5. Hence AB ≥
√
5
5 >

√
13
9 and this case is completed.

• Now suppose D = 8, meaning b2 ≡ 8 (mod 4a).
Since 8 is not a square modulo 5 (the squares are 0, 1, 4), it follows 5 - a.
Since 8 is not a square modulo 3 (the squares are 0, 1), it follows 3 - a.
Since 8 is not a square modulo 16 (the squares are 0, 1, 4, 9), it follows 4 - a.

This means if D = 8 then a ≤ 7. Hence AB ≥
√
8
7 >

√
13
9 and this case is completed.

• Now suppose D = 12, meaning b2 ≡ 12 (mod 4a).
Since 12 is not a square modulo 5 (the squares are 0, 1, 4), it follows 5 - a.
Since 12 is not a square modulo 9 (the squares are 0, 1, 4, 7), it follows 3 - a.

This means if D = 12 then a ≤ 8. Hence AB ≥
√
12
8 >

√
13
9 and this case is

completed.
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• Now suppose D = 13, meaning b2 ≡ 13 (mod 4a). Since 13 is not a square modulo
8, it follows a is odd. Hence in this case AB ≥

√
13
9 , which is what we wanted.

• Finally, if D ≥ 17, we have the bound AB ≥
√
D

10 ≥
√
17
10 >

√
13
9 .

Second solution Alternatively, rather than by cases on D, one may also use cases on the
value of a. For a fixed value of a, the value D = b2−4ac takes values equal to the quadratic
residues modulo 4a. So, one may search the non-square D ∈ {2, 3, 5, 6, 7, 8, 10, 11, . . . }
for the first value which could occur. (In fact, since the squares modulo 4 are 0 and 1,
we may restrict to those values of D which are not perfect squares but are 0 (mod 4)
or 1 (mod 4); that is D ∈ {5, 8, 12, 13, 17, 20, 21, . . . }.) These values for a ≥ 6 are listed
below:

a Dmin
√
D/a

a = 6 D = 12
√
12/6 ≈ 0.577

a = 7 D = 8
√
8/7 ≈ 0.404

a = 8 D = 17
√
17/8 ≈ 0.515

a = 9 D = 13
√
13/9 ≈ 0.401

a = 10 D = 20
√
20/10 ≈ 0.447

In this table,
√
13/9 is the smallest value occurring. And for a ≤ 5, since D ≥ 5 we

would always get a value at least
√
5/5 >

√
13/9 anyways. This concludes the proof.
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§2 Problem 2
The answer is yes, such a trapezoid exists. We present two possible direct constructions
and one indirect one.

First construction Let A = (0, 0), B = (1, 0), C = (2
√
2, 2

√
2), D = (1, 2

√
2), as shown

below.

A
B

CD

1

3

2
√
2− 1

2
√
2

Then AC = 4 = 1 + 3 = AB + AD, and BD = 2
√
2 = 1 + (2

√
2 − 1) = AB + CD.

Also, we clearly have AB ‖ CD (since ∠DBA = ∠CDB = 90◦) and 3 = AD 6= BC, so
this construction is valid.

Second construction Construct two similar right triangles AOM and CON , where
OM = 33, MA = 44, OA = 55 and ON = 105, NC = 140, CO = 175. Situate these
triangles such that AOC and MON are collinear. Finally, let B and D be the reflections
of O over M and N , respectively. The resulting figure is depicted below.

55

221 175

3333
105 105

44

140

55

175

A

B

C

D
OM

N
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Then because 4AOB and 4COD are similar, it follows that AB and CD are parallel.
In that case, we have

AB = AO = 55

CD = CO = 175

BC =
√

BN2 +NC2 =
√
1712 + 1402 = 221

AC = AO + CO = 55 + 175 = 230 = AB + CD

BD = BO +DO = 2(33 + 105) = 276 = BC + CD.

(The length of AD is not relevant for this solution.) This completes the construction.

Remark. The numbers selected here may seem magical in nature. Really, the underlying
idea is to construct two similar isosceles triangles AOB and COD as above, so that AB ‖ CD
and AC = AB + CD are automatically true. In that case, the only condition that needs to
hold is for BD = AB + BC to be true. Because we have a choice of three numbers (the
length AO, BO, CO determine the figure), it should be possible to make this equation true,
and one simply needs to exhibit one solution. The lengths here were chosen after some
calculation to yield a construction in which all lengths were integers, but this is neither
necessary nor important for the solution to work.

Indirect construction using continuity We develop the ideas mentioned in the preceding
remark by showing how one can indirectly prove the existence of a valid trapezoid, without
having to actually find all the necessary constants. Indeed, we again construct two similar
right triangles AOM and CON , but this time we set where OM = 3, MA = 4, OA = 5
(say) and ON = 3r, NC = 4r, CO = 5r, for some r > 0. Then let B and D be the
reflections of O over M and N , respectively.

5 5

5r

33
3r 3r

4

4r
5r

A

B

C

D
OM

N

Because BD = 6+ 6r and AC = 5+ 5r, we have BD > AC, and this trapezoid is not
isosceles for any value of r. Now, we vary the parameter r and consider the function

f(r) := AB +BC −BD = 5 +
√
(3r + 6)2 + (4r)2 − (6 + 6r).
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Note that this function is continuous and

f(0.001) = 5 +
√
3.0062 + 42 − 6.006 > 0

f(1000) = 5 +
√
30062 + 40002 − 6006 < 0.

so by the intermediate value theorem, there must be some 0.001 < r < 1000 for which
f(r) = 0. That value of r gives a valid construction.

Remark. As we saw in the previous solution, r = 35
11 works. In fact, it is the unique value

of r for which f(r) = 0.
The choice of a 3-4-5 triangle in this construction is just for concreteness; many other

dimensions would work as well.
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§3 Problem 3
Let F1 = 1, F2 = 1, F3 = 2, . . . denote the sequence of Fibonacci numbers. We need one
classical lemma before we proceed.

Lemma 3.1
For any integers i and j, FiFj + Fi+1Fj+1 = Fi+j+1.

Proof, only for completeness. This lemma can be proved by using the explicit Binet’s
formula for the Fibonacci numbers. Let ϕ = 1

2(1 +
√
5), so we have the formula

Fn =
1√
5

(
ϕn − (−ϕ)−n

)
holds identically. In this situation,

FiFj + Fi+1Fj+1 =
1

5

[ (
ϕi − (−ϕ)−i

) (
ϕj − (−ϕ)−j

)
+
(
ϕi+1 − (−ϕ)−(i+1)

)(
ϕj+1 − (−ϕ)−(j+1)

) ]
=

1

5

[
ϕi+j + (−ϕ)−(i+j) + ϕi+j+2 + (−ϕ)−(i+j+2)

]
= Fi+j+1

where the last line uses the fact that ϕ2 + 1 =
√
5ϕ.

The idea is to show by induction the following lemma:

Claim — Given n starting 1’s, any number we achieve has the property that

• the larger of the numerator and denominator is at most Fn+1,

• the sum of the two is at most Fn+2.

Proof of main claim. We’ll be looking at the situation where Serena is merging two
fractions

a

b
+

p

q
=

aq + pb

bq

where the left fraction came from k starting 1’s and the right fraction came from ` starting
1’s. In order to complete the induction, it is enough to prove the following.

Lemma
Suppose that{

max(a, b) ≤ Fk+1

a+ b ≤ Fk+2

and

{
max(p, q) ≤ F`+1

p+ q ≤ F`+2.

Then it follows that

aq + pb ≤ Fk+`+1 and aq + pb+ bq ≤ Fk+`+2.
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Proof of lemma. Without loss of generality suppose q ≥ p. For the first inequality,

aq + bp = a · (q − p) + (a+ b) · p
≤ Fk+1(q − p) + Fk+2 · p
= Fk+1 · q + Fk · p
= (Fk+1 − Fk) · q + Fk · (p+ q)

≤ Fk−1F`+1 + FkF`+2 = Fk+`+1.

For the second inequality, we have

aq + bp+ bq ≤ a · F`+1 + b · F`+2

= b · F` + (a+ b) · F`+1

≤ Fk+1F` + Fk+2F`+1 = Fk+`+2. �

The claim now follows directly by induction on n. In the penultimate step, we have
two fractions a

b and p
q which were created from k ones and ` ones respectively, where

k + ` = n. Since aq + pb is the new numerator and aq + bp+ bq is the new denominator
before any simplification, we’re done.

To finish, compute the first several Fibonacci numbers:

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5

F6 = 8, F7 = 13, F8 = 21, F9 = 34, F10 = 55

F11 = 89, F12 = 144, F13 = 233, F14 = 377, F15 = 610

F16 = 987, F17 = 1597, F18 = 2584, F19 = 4181, F20 = 6765

F21 = 10946, F22 = 17711.

If Serena’s final fraction is a
b for a < b then we should have

a <
a+ b

2
≤ 17711

2
< 9000

as desired.
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§4 Problem 4
Setup In the following solution, νp(n) denotes the exponent of the prime p in the prime
factorization of n.

We define two divisors d and d′ of n to be related if, for every prime p dividing n, we
have either

νp(d) + νp(d
′) = νp(n) or νp(d) = νp(d

′).

This is an equivalence relation, so it partitions the divisors of n into equivalence classes.
See the illustration below, which shows the classes for n = 24 ·53 = 2000. The equivalence
classes are the points of the same color connected by curves.

1 2
4

8 16

5
10

20
40

80

25
50

100
200

400

125 250
500

1000 2000

Fix any such equivalence class C. We will show one can construct a bijection

fC : A ∩ C → B ∩ C

that has the desired divisibility property d | fC(d). This will solve the problem.

Main claim The following claim is the heart of the problem:

Claim — Let X be a finite set, and F be a family of subsets of X. Assume that
for every set A ∈ F , all the subsets of A are also in F .

Then there exist a bijection σ : F → F satisfying σ(A) ∩A = ∅ for every A ∈ F .

Proof. We proceed by induction on |X|, with the base case |X| = 0 being easy. For the
inductive step, let x ∈ X be any element. We can split the sets of F in three ways:

• Sets containing x, which we call small;

• Sets S ∈ F which don’t contain x, but for which S ∪ {x} ∈ F , which we call big;

• All remaining sets, which we call neutral.

There is a natural bijection from small to big sets by S 7→ S ∪{x}. Also, by the inductive
hypothesis, there is a bijection

σsmall : {small sets} → {small sets}
σneutral : {neutral sets} → {neutral sets}
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with the desired property. Then we can define our desired σ on all small, large, neutral
sets respectively by

σ(S) = σsmall(S) ∪ {x} for all small S
σ(S ∪ {x}) = σsmall(S) for all small S

σ(T ) = σneutral(T ) for neutral T .

This works and completes the induction.

Remark. This claim apparently appeared previously on an Iranian olympiad in 2000, see
https://aops.com/community/p20560.

It is possible to phrase this using Hall’s marriage lemma. However, as far as I am aware,
doing this still requires an induction similar to the one specified above, in which one deletes
an element x ∈ X. So we chose to just present the direct solution which did not cite the
marriage lemma.

It’s also possible to modify the induction in such a way that π is actually an involution,
meaning π(π(A)) = A for all A. This uses the same induction, but the collation step is
more complicated; see the above link for details.

Completion For each divisor d in C, we define

S(d) =

{
p prime | νp(d) >

1

2
νp(n)

}
.

We invoke the claim where X is the set of prime divisors of n and F = {S(d) | d ∈ A ∩ C}.
This gives us a bijection σ : A∩C → A∩C so that S(d)∩S(σ(d)) = ∅ for each d ∈ A∩C.
Then we define

fC(d) =
n

σ(d)
∈ B ∩ C

and this gives the desired fC , by construction.
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