Math Prize for Girls Olympiad

Advantage Testing Foundation/Jane Street

Time Limit: 4 hours

Thursday, November 30, 2023

1. Let $n \geq 2023$ be an integer. Prove that there exists a permutation $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of $(1,2, \ldots, n)$ such that

$$
p_{1}+2 p_{2}+3 p_{3}+\cdots+n p_{n}
$$

is divisible by n.
2. The two cats Fitz and Will play the following game. On a blackboard is written the expression

$$
x^{100}+\square x^{99}+\square x^{98}+\square x^{97}+\cdots+\square x^{2}+\square x+1 .
$$

Both cats take alternate turns replacing one \square with a 0 or 1 , with Fitz going first, until (after 99 turns) all the blanks have been filled. If the resulting polynomial obtained has a real root, then Will wins, otherwise Fitz wins. Determine, with proof, which player has a winning strategy.
3. Let m be the product of the first 100 primes, and let S denote the set of divisors of m greater than 1 (hence S has exactly $2^{100}-1$ elements). We wish to color each element of S with one of k colors such that

- every color is used at least once; and
- any three elements of S whose product is a perfect square have exactly two different colors used among them.
Find, with proof, all values of k for which this coloring is possible.

4. Let $O=(0,0)$ be the origin of the $x y$-plane. We say a lattice triangle $A B C$ is marine if it has centroid O and area $\frac{3}{2}$.
Let P be any point in the plane which is not a lattice point. Prove that P lies in the interior of some marine triangle if and only if the line segment $\overline{O P}$ does not pass through any lattice points besides O.
(A lattice point is a point whose x-coordinate and y-coordinate are both integers. A lattice triangle is a triangle whose vertices are lattice points.)
