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Fall/Winter 2023

§1 Problem 1, proposed by Oleg Kryzhanovsky
We present one of many possible constructions.

Define c =
⌊
n−6
3

⌋
. Start with the identity permutation pk = k, and let S =

∑n
1 kpk.

The idea is the following:

Claim — If pi = i and pj = j for some i < j, then switching to pi = j and pj = i
decreases S by (i− j)2.

Proof. The change is i · i+ j · j − i · j − j · i = (i− j)2.

Then consider the following set of c+ 3 possible operations:

• Switching p1 = 1 with p2 = 2 would decrease S by 1.

• Switching p3 = 3 with p4 = 4 would decrease S by 1.

• Switching p5 = 5 with p6 = 6 would decrease S by 1.

• Switching p7 = 7 with p9 = 9 would decrease S by 4.

• Switching p10 = 10 with p12 = 12 would decrease S by 4.

• Switching p13 = 13 with p15 = 15 would decrease S by 4.

• Switching p16 = 16 with p18 = 18 would decrease S by 4.

• . . .

• Switching p3c+4 = 3c+ 4 with p3c+6 = 3c+ 6 would decrease S by 4.

If we performed exactly b of the first three operations (0 ≤ b ≤ 3), and exactly a of the
latter c operations (0 ≤ a ≤ c), then the value of S would decrease by 4a+ b. By varying
a and b, we can perform any decrease between 0 and 4c+ 3, respectively.

Now, since n ≥ 2023, the inequality n ≤ 4c+ 3 is clearly true. If k is the remainder
when 12 + 22 + · · ·+ n2 is divided by n, then it follows we can decrease S by k using this
procedure, so that S becomes a multiple of n.
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§2 Problem 2, proposed by Anant Mudgal, Sahil Mhaskar,
Sutanay Bhattacharya

The answer is that Will cannot guarantee a win; Fitz has a winning strategy.
The strategy for Fitz is as follows:

• Fitz start by setting the x1 coefficient to 0.

• Thereafter, Fitz pairs the remaining terms into 49 pairs: the pairs are (x2, x3),
(x4, x5), . . . , up to (x98, x99). Whenever Will fills a blank for one of these terms
with 0 or 1, Fitz fills the blank for the paired term with the same number.

This means that the resulting polynomial must be of the form

P (x) = x100 + (x+ 1)(x2k1 + x2k2 + · · ·+ x2km) + 1

for some exponents 1 ≤ k1 ≤ k2 ≤ · · · ≤ km ≤ 49, where m is the number of times that
Will filled with 1 rather than 0.

Claim — Such a polynomial P (x) only takes positive real values over R (and in
particular has no real zeroes).

Proof. Obviously, if x ≥ 0 then P (x) > 0. So let x = −r for some r > 0, so that

P (−r) = r100 + (1− r)
(
r2k1 + · · ·+ r2km

)
+ 1.

If r ≤ 1, then it’s clear that P (r) > 0 again. For r > 1, we instead write

P (−r) = (r100 − r2k1+1) + (r2k1 − r2k2+1) + · · ·+ (r2km − r) + r + 1

which is again positive, since each parenthesized term is positive.

§3 Problem 3, proposed by Ankan Bhattacharya
The only possible value of k is k = 100. More generally, if 100 is replaced by an n ≥ 1,
the answer is k = n.

First, we make a cosmetic rewriting. We let V denote the set of vectors of length n
whose entries are either 0 or 1, and where all addition is taken modulo 2. (The zero
vector 0 is the one with all components 0; all other elements of V are said to be nonzero.)
We can identify each number s ∈ S with a vector of V by taking the ith coordinate to be
nonzero if s is divisible by the ith prime. Now the condition that three elements have a
square product is equivalent to the corresponding three vectors having sum zero.

Under this notation, the problem statement can be rephrased more naturally as follows:

The 2n− 1 nonzero elements of V need to be colored with k colors (each color
used at least once) such that if a, b, c ∈ V are nonzero and satisfy a+b+c = 0,
then exactly two different colors are used among them.

¶ Example of valid coloring with exactly n colors. Given each a ∈ V , if the first 1 is
the ith coordinate, color a by the ith color.
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¶ Proof any coloring uses exactly n colors. We prove this by induction on n ≥ 1.
Since the base case n = 1 is obvious, we focus entirely on the inductive step.

The main claim is the following:

Claim (Key claim) — If a, b, and c are the same color and a + b + c 6= 0, then
a+ b+ c is also this color.

Proof. Suppose not: let a, b, c be “red” and a+ b+ c be “blue”. Then,

b︸︷︷︸
red

+ c︸︷︷︸
red

= a︸︷︷︸
red

+(a+ b+ c︸ ︷︷ ︸
blue

)

implies b+ c must be blue. Similarly, c+ a and a+ b are blue. This is a contradiction,
because these three elements sum to zero.

Remark. This main claim has the property that it can also be verified by manually verifying
it is true when n = 3, and then applying to the general situation by simply looking at “just”
the eight elements {0, a, b, c, a+ b, b+ c, c+ a, a+ b+ c}.

In particular, this implies:

Claim — Pick any color. The number of times it is used is either 1 or an even
number.

Proof. Call the color “red”. Suppose there are at least two red elements; say a and b.
Note that

c := a+ b 6= 0

is not red.
By the key claim, if x has red, then so is x+ c, and conversely, if x+ c has red, then

so does x.
It follows that the elements of red split into pairs which sum to c, so there must be an

even number of them.

Remark. Linear algebra experts will recognize that it must actually be 0 or a power of 2 in
the above claim, but this isn’t needed.

Since 2n − 1 is odd, some color must appear exactly once. Suppose that element v
has a unique color, and WLOG v has a 1 in the nth component. Then, x and x + v
have the same color for all x 6= 0; moreover, exactly one of these two has a 0 in the nth

components.
This means we can quotient out by v, as follows. Take the 2n−1 − 1 pairs {x, x+ v}

described above. For each pair, take the vector with a 0 in the nth component, and
delete this component to get a vector of length n− 1. If we do this process, we obtain
one (nonzero) vector of length n− 1 from each pair, together with a valid coloring with
exactly one fewer color (because the unique color for v is the only one that disappeared).
That means, by the induction hypothesis, exactly n− 1 colors were left. So there were
exactly n colors to begin with.

Remark. In fact, this solution shows there is “essentially” only one possible coloring.
To clarify what is meant by “essentially” requires the language of linear algebra. We can

view V more abstractly as an F2-vector space of dimension n, without paying attention to
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any particular choice of coordinates. Then the above solution, modified to use this higher
language, implies that there exists a basis e1, . . . , en of V for which a vector v ∈ V is colored
with the ith color if i is lowest index for which the coefficient of ei in v is nonzero. Moreover,
as we saw, any choice of basis yields a (different) valid coloring.

In particular, in the original problem, the number of valid colorings (up to permutations
of the colors) turns out to be equal exactly to

2(
n
2)(21 − 1)(22 − 1) . . . (2n − 1).

because this is the number of ways to pick a basis of an n-dimensional F2-vector space.

Remark. When n = 3, a fun corollary of this problem is that any 2-coloring of the points
of the Fano plane has a monochromatic line. This fact is used in the niché board game Fire
and Ice to ensure that the game can’t end in a draw.

¶ Alternative proof that any coloring uses exactly n colors, found by the only
contestant who solved this problem. Given two vectors a and b, we define a � b to
mean that a and b have different colors, and a+ b has the same color as a. The heart of
this solution is based on the following observation:

Claim — The relation � is transitive, meaning if a � b and b � c then a � c.

Proof. Suppose a and a+ b are “red”, while b and b+ c is “blue”. Then c is not blue, so
we consider two cases.

• Suppose c is also red. Then

a︸︷︷︸
red

+ c︸︷︷︸
red

= (a+ b︸ ︷︷ ︸
red

) + (b+ c︸ ︷︷ ︸
blue

)

forces a+ c to be blue. However, now consider

a︸︷︷︸
red

+(b+ c︸ ︷︷ ︸
blue

) = b︸︷︷︸
blue

+(a+ c︸ ︷︷ ︸
blue

) = c︸︷︷︸
red

+(a+ b︸ ︷︷ ︸
red

).

There is no way to color a+ b+ c, giving a contradiction.

• Suppose c is instead a third color, say “green”. Then

a︸︷︷︸
red

+ c︸︷︷︸
green

= (a+ b︸ ︷︷ ︸
red

) + (b+ c︸ ︷︷ ︸
blue

)

forces a+ c to be red, so a � c.

Remark. This claim also has the same property as the main claim of the first solution,
where its truth for just n = 3 implies the result for all n.

Since � is transitive but anti-reflexive (we never have v � v), there exists a particular
element v which is �-minimal, meaning v 6� v′ for every other v′. Let’s say it is
“black”. Then there cannot be any other black element w, since otherwise we would have
v ≺ (v + w). In other words, we have shown there exists an element with a unique color.
We can now proceed as in the first solution above.
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§4 Problem 4, proposed by Holden Mui
The proof is divided into three main steps, in ascending order of difficulty:

Step 1 Show that if OP contains a lattice point, the no marine triangle contains P .

Step 2 Show that if OP has rational slope but contains no lattice points, then P is
contained inside some marine triangle.

Step 3 Show that if OP has irrational slope but contains no lattice points, then P is
contained inside some marine triangle.

Step 3 is the most difficult step and we provide several approaches for it.

¶ Proof of Step 1, using Pick’s theorem. It would be sufficient to prove that a marine
triangle cannot contain both O and a second lattice point Q 6= O.

A

B

C

O

P
Q

Indeed, this follows by Pick’s theorem: any triangle which contains both O and Q
would have area at least 3

2 + 2− 1 = 5
2 , so cannot be marine.

¶ Common boilerplate for Steps 2 and 3. Before proceeding, we remark that in any
marine triangle ABC, because O is the centroid, it follows that [AOB] = [BOC] =
[COA] = 1/2. This gives an equivalent definition of marine triangle via areas.

We will assume henceforth without loss of generality that the coordinates of P = (u, v)
satisfy 0 < u < v. This follows by eliminating several edge cases in turn:

• We may assume P lies in the first quadrant by rotating quadrants.

• We also henceforth discard the case where P lies on one of the coordinate axes.
These cases are easy to deal with by hand; we can use the marine triangle with
vertices at (1, 0), (0, 1) and (−1,−1).

• If P lies on the line x = y, we may similarly resolve the cases manually. (Note the
triangle with vertices (1, 1), (1, 0), (−2,−1) is marine.)

• After that, we may reflect P along the line x = y to assume that its y-coordinate is
strictly greater than its x-coordinate.

The nonnegative assumption can be obtained by rotating the quadrants; the assumption
u ≤ v can be done by flipping over the line y = x.
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¶ Proof of Step 2. Suppose OP has positive rational slope p
q , with 1 ≤ p ≤ q and

gcd(p, q) = 1. Let A = (p, q), so that A lies on the extension of ray OP past A. Use
Bezout’s lemma to find nonnegative integers u, v such that pv−qu = 1; then if B = (u, v)
the triangle OAB is seen to have area 1/2.

A = (p, q)

B = (u, v)

C

O

P

Let C = −(A+B) = (−(p+u),−(q+ v)). Then 4ABC is the desired marine triangle.

¶ First proof of Step 3 using Pick’s theorem again. Say a lattice point is reduced if
its coordinates are coprime positive integers. Also, let m be the slope of line OP , which
is irrational.

Fix a positive number ρ to be determined later. Consider the quarter-disk centered
at O of radius ρ in the first quadrant. We let A = A(ρ) be the reduced lattice point
with the minimal slope in this disk that lies above the line OP (the slope of OA thus
gives best rational over-approximation of m among lattice points in this disk). Similarly
B = B(ρ) is the reduced lattice point with maximal slope in this disk that lies below the
line OP .

x

y

A

B

P

O

ρ

Claim — If ρ is chosen large enough, then 4OAB contains point P .

Proof. It is sufficient that min(OA,OB) > OP .
Let S denote the finite set of lattice points within distance OP from the origin. Since

m is irrational, there exist rational numbers which are larger than m but less than the
slopes of the lines joining O to any point in S above line OP . So once ρ is large enough
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that our quarter-disk contains a point corresponding to such an approximation, then
OA > OP will automatically be true.

The proof for OB > OP is similar again for large enough ρ.

Claim — For any ρ, 4OAB has no lattice points inside it and hence has area 1/2.

Proof. Indeed, if it did, then any lattice point we obtained would give a better approxi-
mation to m lying inside triangle OAB and hence inside our quarter-disk, contradicting
the definition of A or B! Then the area claim follows by Pick theorem.

Choose large enough ρ for these claims and then let C = −(A + B) again. Then
4ABC is the desired marine triangle.

¶ Second proof of Step 3 using Farey sequences. This proof is not so different from
the previous proof, except that instead of Pick’s theorem we appeal to the theory of Farey
sequences. Specifically, consider consecutive fractions p

q and r
s in the Farey sequence such

that
p

q
< m <

r

s
.

Consecutive fractions in the Farey sequence always obey |ps − qr| = 1, so if we set
A = (p, q) and B = (r, s) then 4AOB has area 1/2, and upon setting C = −(A+B) =
(−(p+ r),−(q + s)) we would be done. Thus, like in the previous solution, it would be
enough that P lies inside AOB.

To do this, it suffices to simply ensure that min(q, s) > OP . Since m is irrational, this
follows again from the properties of Farey sequences; the set of rational fractions whose
reduced denominators exceed OP is still dense in R.

¶ A third proof of Steps 2 and 3 simultaneously using shear transformations. This
approach, submitted by the original author, avoids working with P and instead defines
two shear transformations as follows:

s1 : (x, y) 7→ (x− y, y)

s2 : (x, y) 7→ (x, y − x).

The main claim is the following:

Claim — Let P be any point. If s1(P ) lies strictly inside a marine triangle, then so
does P . The same is true for s2(P ).

Proof. The shear transformation s1 has an inverse given by s−1
1 : (x, y) 7→ (x+y, y). This

inverse preserves the origin and preserves (signed) areas. So if the marine triangle ABC
contains s1(P ), then the triangle with vertices s−1

1 (A), s−1
1 (B), s−1

1 (C) is marine and
contains the point P .

The proof for s2 is exactly the same with s−1
2 : (x, y) 7→ (x, x+ y).

We also have the following simple observation.

Claim — If P is such that OP contains no lattice points (other than O), then there
are no lattice points on the line segments joining O to s1(P ) or s2(P ) either.
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Proof. The shear transformations (and their inverses) preserve collinearity, betweenness,
and send lattice points to lattice points.

Suppose P = (x, y) is such that OP contains no lattice points. Assume WLOG that
0 ≤ x ≤ y to begin. We apply shear transformations to P in the following algorithm:

Step 1 If x = 0 or x+y < 1, stop. Otherwise, apply s1 to P (that is, repeatedly subtract
x from the second coordinate) until y < x but still y ≥ 0. Then go to Step 2.

Step 2 If y = 0 or x+y < 1, stop. Otherwise, apply s2 to P (that is, repeatedly subtract
y from the first coordinate) until x < y but still x ≥ 0. Then go back to Step 1.

For example, if P = (3.14, 20.23) then the operation goes

(3.14, 20.23)
Step 17−−−→ (3.14, 1.39)

Step 27−−−→ (0.36, 1.39)
Step 17−−−→ (0.36, 0.31)

and then terminates. And the algorithm will always terminate eventually, because of the
following.

Claim — If P = (x, y) before Step 1, 0 < x ≤ y, and P = (x, y′) after Step 1, then

x+ y′

x+ y
<

2

3
.

In other words, each of Step 1 or Step 2 decreases the sum of coordinates by at least
a factor of 2

3 .

Proof. We know y′ = y + nx for some n ≥ 1, and x > y′ ≥ 0. So we need to check
x+y

x+y+nx < 2
3 which is obvious.

Consider the situation after the algorithm terminated, resulting in a final point
Q = (x, y). We claim that this point Q is contained inside the marine triangle with
vertices A = (1, 0), B = (0, 1), C = (−1,−1).

A

B

C

O

We consider three cases.

• If x = 0, then because OQ also doesn’t contain lattice points, we have y < 1. Hence
Q lies on segment OB.

• If y = 0, we similarly have x < 1 and Q lies on segment OA.
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• Otherwise, the algorithm must have terminated because x+ y < 1. So in this case
Q lies inside the triangle OAB.

Thus Q lies inside this marine triangle. Having completed all cases, we’re done.
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