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§1 Problem 1, proposed by Anant Mudgal
The answer is no, the lines are never concurrent. We proceed by contradiction — showing
that the concurrence would imply that AB = AC. Refer to the figure below (which is
drawn slightly not to scale).

The conditions in the problem imply that we have four equal angles

]BFD = ]DBF = ]DEC = ]ECD

owing to the two (similar) isosceles triangles 4BDF and 4DEC. In particular,

]BFD = ]ACD =⇒ AFDC is cyclic
]DEC = ]DBA =⇒ AEDB is cyclic.
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Now assume the three lines AD, BE, CF were concurrent at a point X. Then by
considering power of a point as

BX ·XE = AX ·XD = CX ·XF

we obtain that quadrilateral BFEC is cyclic too. Since DB = DF and DE = DC and
BF 6‖ EC, it follows that D is the center of that circle. In other words

DB = DF = DE = DC.

Hence, the two similar isosceles triangles from earlier, 4BDF and 4CDE, are actually
congruent. In particular, BFEC would be an isosceles trapezoid, implying AB = AC.
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§2 Problem 2, proposed by Max Lu and Max Xu
For both parts, it will be easier to work with N = (10k + 1) · (n+ 1)− 1.

¶ Solution to (a). The idea is to take modulo 11. Note that if k is odd, then

N = (10k + 1)︸ ︷︷ ︸
≡0 mod 11

·(n+ 1)− 1 ≡ −1 (mod 11).

Since no perfect square is −1 (mod 11), the conclusion follows.

¶ Solution to (b). We prove in fact N can be a perfect square for any even k ≥ 2.
Choose the k-digit number

n = (10k/2 − 1)2 + 1.

Then one can verify the identity

N =
(
10k + 1

)(
(10k/2 − 1)2 + 2

)
− 1 =

(
10k − 10k/2 + 1

)2
.

In particular, taking k = 1014 finishes.

Remark. At first, the solution to (b) may appear to be a “magical identity”. However, it
turns out that it actually can be discovered naturally from the solution to (a) using only
number theory, without any algebra.

For concreteness, let’s show how one would find n when k = 4. Then we are trying to
find integer solutions to

10001(n+ 1)− 1 = c2.

The idea is that n is largely irrelevant and this just asks

c2 ≡ −1 (mod 10001).

In part (a), we saw that the issue with odd k was that −1 was not a quadratic residue
modulo 10k + 1, because it is divisible by 11. So is −1 a quadratic residue modulo 10001?
The answer is “obviously yes”, because one can take c ≡ 100 (mod 10001).

This does not work right away since it gives n = 0; that is, c is too small. But this can
be mitigated by instead choosing the other square root modulo 1001:

c ≡ −100 (mod 10001) ⇐⇒ c ≡ 9901 (mod 10001).

In other words, 99012 + 1 should be a suitably large multiple of 10001. And indeed,
99012 = 98029801 as we need.

The general situation is the same except one works modulo 10k + 1. We know −1 is a
quadratic residue because (10k/2)2 ≡ −1 (mod 10k + 1) and so one can just take the other
square root (10k + 1) − 10k/2 as before. In general, every value of c such that c2 ≡ −1
(mod 10k + 1) and c >

√
10 · 10k−1 will give a valid square. For example, in the case k = 4,

the factorization 104 + 1 = 73 · 137 together with the Chinese remainder theorem can be
used to find 82428241 = 90792.

Remark. Amusingly, the submission email for this problem mentioned that it was inspired
by “Max’s favorite number 8281”, but does not specify which Max.
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Remark. Although it was proposed by the authors independently, it turned out that this
problem has also been previously discussed by Florian Luca and Pantelimon Stănică in
https://doi.org/10.1080/00029890.2019.1632628.

§3 Problem 3, proposed by Karthik Vedula
Let a = BC, b = CA, c = AB, for brevity. Note that a2, b2, c2 are integers by the
Pythagorean theorem.

By Pick’s theorem, it follows that ABC has area half an integer, say k/2. However,
Heron’s formula on the triangle ABC gives an explicit formula for this area:

k

2
=

1

4

√
2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4)

This implies that

(2k)2 + (a4 + b4 + c4) = 2(a2b2 + b2c2 + c2a2)

or
(2k)2 + (a2 + b2 + c2)2 = 4(a2b2 + b2c2 + c2a2).

In particular, a2 + b2 + c2 is an even integer. Dividing by four gives

k2 +

(
a2 + b2 + c2

2

)2

= a2b2 + b2c2 + c2a2

and this solves the problem.

Remark. This geometric insight shows that in principle, one can find a pure-coordinate
solution to the problem using a suitable identity. Specifically, suppose we impose coordinates
A = (0, 0), B = (u, v), and C = (s, t). Then k = |ut− sv| and

a2 = (u− s)2 + (v − t)2

b2 = s2 + t2

c2 = u2 + v2.

Then, if one is willing to check identities by manual expansion, this gives a “one-line proof”

a2b2 + b2c2 + c2a2 = (ut− vs)
2
+

(
(u− s)2 + (v − t)2 + u2 + v2 + s2 + t2

2

)2

.

However, it does not seem there is any obvious way to discover this identity without the
underlying geometric context.

§4 Problem 4, proposed by Bobby Shen
We show that the task is always impossible if n ≡ 1 (mod 3), but give a dyadic construc-
tion for several n.

In both parts, it will be useful to discuss the set of white cells with graph-theoretic
language — we consider white cells to be vertices where two cells sharing a side are
adjacent. Then condition (iii) is stating that the graph on white cells has a unique path
between any two vertices — i.e, that it is a tree (equivalently, it is connected and acyclic).
We will use such terminology freely without referring to the underlying graph explicitly.
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¶ Proof of impossibility. Suppose there are a white squares and b black squares, so
a+ b = n2. The idea is to double-count unordered pairs of adjacent squares in two ways.

On the one hand, the total number of pairs is obviously 2n(n− 1).
On the other hand, we can decompose the count by colors:

• There are 0 black-black pairs of adjacent squares.

• The set of white cells forms a tree, so the number of white-white pairs is exactly
a− 1 .

• The number of white-black pairs can be counted by noting that every black square is
adjacent to exactly 4 white squares, except for the four corner black squares, which
are adjacent to exactly 2. This gives a total count of 2 · 4 + 4 · (b− 4) = 4b− 8 .

These three numbers need to sum to 2n(n− 1).
So, in order for the task to be possible with a white and b black squares, it would be

necessary (although not obviously sufficient) that

a+ b = n2

(a− 1) + (4b− 8) = 2n(n− 1).

At this point, one should suspect that for many values of n this equation has no integer
solutions (a, b) at all. And indeed, taking the equations modulo 3 gives

n2 = a+ b ≡ a+ 4b ≡ 2n2 + 2n+ 8 (mod 3)

which is false if n ≡ 1 (mod 3). Hence, Elaine’s task is not possible at all if n ≡ 1
(mod 3).

¶ Recipe for enlarging a satisfying coloring. In general, a satisfying coloring can
be seen as a function χn : {0, 1, . . . , n − 1}2 → {black,white}. We show how to take a
satisfying coloring χn and extend it to a satisfying coloring on χ2n−1. This will let us
provide a construction for infinitely many n by induction, starting from any base case.

Claim — If χn is any satisfying coloring of an n× n board for n ≥ 3, then

χ2n−1 ((x, y)) :=


black if x and y are both odd
white if x+ y is odd
χn ((x/2, y/2)) if x and y are both even.

is a satisfying coloring of a (2n− 1)× (2n− 1) board.

We show an example of this procedure below, transforming an n = 3 construction into
one for n = 5. A natural-language description is that χ2n−1 consists of a “doubled” copy
of χn, together with “new” black squares (colored blue below) on the intersection of
“gapped” rows and columns.

χ3

χ5
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Proof of claim. Condition (i) holds for χ2n−1 since it holds for χn. Condition (ii) certainly
holds because all black cells have even coordinate sum, so no two can be adjacent. As for
condition (iii), the set of white cells is still connected because “old” white cells that were
adjacent in χn are now connected by an intermediate “new” white cell. And it is still
acyclic — if there was a cycle of white cells in χn, it must alternate between old and new
white ones, in which case taking the old white cells would give a cycle in χn, but χn was
assumed to be satisfying so this can never occur.

To complete the problem, it remains to take a single valid example (such as the 6× 6
coloring in the problem statement) and repeatedly apply this procedure to generate
infinitely many n for which the task can be completed.

Remark. The 6× 6 example from the statement is obviously not the most natural base
case; the simplest construction is a 3× 3 square with only four black corners. If one applies
the process above, one gets the following patterns shown below for n = 3, n = 5, n = 9,
respectively.

χ3

χ5

χ9

This family of resulting colorings for n = 2k+1 can actually be described concretely without
induction. If we instead the cells by ordered pairs (x, y) ∈ {−2k,−2k + 1, . . . , 2k}2 in the
obvious way, then one can encode it as:

(x, y) 7→


white if x = 0 or y = 0

black if xy 6= 0 and ν2(x) = ν2(y)

white if xy 6= 0 and ν2(x) 6= ν2(y).

While this is simpler to state, it seems harder to verify the condition (iii) when written this
way, since one still needs to use some form of induction. Moreover, the general recipe can
use any “initial” base case as the coloring, so we chose to present that one first.

¶ Extension: Sketch of all construction for all n 6≡ 1 (mod 3). The author mentions
that Elaine’s task is in fact possible for all n ≥ 3 satisfying n 6≡ 1 (mod 3), although the
construction is not easy to describe in words, and much harder to find than the doubling
recipe just mentioned before.

Illustrated below are constructions for n = 26 and n = 30. These generalize to families
of constructions valid for all even n ≥ 12 with either n ≡ 2 (mod 6) and n ≡ 0 (mod 6),
respectively. To improve readability, in the white cells, a light green tint has been added
to the leaves of the white tree (i.e. to white cells which are adjacent to only one other
white cell).
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n = 26, extends to all n ≡ 2 (mod 6) for n ≥ 14

n = 30, extends to all n ≡ 0 (mod 6) for n ≥ 12

This shows that all even n ≥ 12 with n 6≡ 1 (mod 3) are possible. The example for
n = 6 was given already, and one can manually find an example for n = 8 as well.

Thus all even n ≥ 6 are handled. Finally, the previous doubling recipe (going from n
to 2n− 1) inductively produces constructions for all valid odd n ≥ 5 (besides the case
n = 2k + 1 which we already did).
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